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Abstract: Conventionally, the point spread function (PSF) is understood as a characteristic function of any optical system. It
captures the information about the amount of blur present along all the directions for a point in the scene. However, the
dependence of blur on the PSF is in the form of convolution for any object other than a point source present in the scene and
hence their relationship is less explicit. The authors propose a blur parameter locus curve (BPLC) as a system representation
which has a one to one relationship with blur. BPLC simply is a chart of blur amounts in all directions of a given PSF with
respect to the selected measurement function. They further characterise the PSF by decomposing the variation of BPLC across
all directions based on the study performed for different possible forms of the blur kernels. Such decomposition provides
powerful tools for various analysis. As PSF can be anisotropic, the computation of BPLC becomes an essential intermediate
step to obtain the scale map as at the same scale, blur is different in different directions. Furthermore, they demonstrate the use
of BPLC to obtain other system characteristics function such as PSF.

1 Introduction
We begin by making precise definition of certain terms that are the
basis of our development. All subsequent use of the respective
terms will be with these definitions in mind.

PSF: Point spread function (PSF) in the imaging plane of a three-
dimensional (3D) scene point. In the image plane, it is defined as a
2D function for each point in the image plane that is defined by the
location of the corresponding source point in scene as well as the
properties of the imaging system. Thus, the PSF relates the 3D
scene to the image plane, by associating with each point source
location in 3D space, a certain image which we shall call the
respective PSF for that particular point source location. The scene
dimensions, therefore, manifest as parameters of such a PSF.
Blur: We define ‘Blur’ as the spread of an object image in the
image plane due to the underlying PSF of the imaging system. So,
if the blur kernel is a Kronecker delta function, there would be no
blur corresponding to that point/object in the scene.
Blur amount: Blur amount is a measurement of the blur present.
Blur can be measured in terms of blur inducing phenomena such as
the radius of spread, variance etc. It is a user-defined quantity, e.g.
for Gaussian PSF g(x, y; σ) blur amount could be σ, or alternatively,
blur radius R often defined as 2σ.
Blur parameters: Parameters of the underlying PSF that control the
blur amounts are called ‘Blur Parameters', e.g. σ for defocus-
induced Gaussian, blur length L for motion blur, radial distance r
for rolling blur.
Scale: Scale refers to physical quantities of the imaging system-
scene combination that result in the underlying PSF by determining
the respective blur parameters. The physical quantities may affect
PSF either directly or indirectly as a combination of two factors:
for example, rotation blur depends upon the distance from the
rotating axis of the point source, in addition to depth, the PSF of
diffraction is dependent on aperture size and wavelength (but not
on the depth). We refer to all these quantities as ‘scale’ of
corresponding PSFs.
Scale parameters: Parameters such as depth that relates scale to
corresponding blur parameters of underlying PSF are referred to as
‘Scale Parameters’.
Scale map: Scale parameter for each pixel for a given image is
referred to as scale map. Thus, with each pixel we associate the

scale parameters of the corresponding source point(s). In many
situations, the point spreading will result in a particular pixel in the
image being associated with multiple scene points, and when this is
the case, the scale map will associate with that pixel the scale
parameters of the most dominant scene point involved.
Blur kernel: Blur kernel is obtained by fixing the point source
location variables X, Y , Z, v to specific values. The blur kernel
therefore reduces, under the particular constraints, to a function of
just (x, y). Its form is thus frozen for a given imaging system and
scene/object. For convenience, we choose a PSF with unity blur
parameters as the blur kernel, e.g. for Gaussian PSF g(x, y; σ), the
corresponding blur kernel is defined as g(x, y; 1). It is a generic
representation of the PSF.

The PSF is a characteristic function of any optical/imaging system.
Essentially, it is an energy redistribution of a point source of the
scene in the image plane. The degree and the form of energy
redistribution depend on the scale and the nature of the PSF. The
fundamental notion of nature of PSF is captured in the blur kernel
which takes on different canonical forms for different engendering
physical phenomena: we have a defocus blur kernel that serves to
represent all defocus caused blur phenomena, a different ‘linear
motion’ blur kernel for all instances of linear motion blur etc. Thus,
blur amount at any image point, is a function that is dependent
upon both the nature of the blur kernel as well as blur parameters.
The blur kernel for a given source remains invariant of scale –
however, the blur parameters vary with the scale and they
determine the precise final realisation of the PSF.

The PSF can be utilised for many applications such as
deblurring, system characterisation, scale map estimation etc. Scale
map estimation is an important field of research. The variations of
scale are captured in the scale map and can be used to obtain the
underlying information of the corresponding physical quantities.
Thus, the scale map can be evaluated by estimating the
corresponding PSF at each pixel location.

The PSF is usually defined over N × N points for each image-
point in the image plane. However, we encounter edges more
frequently than the isolated points in the image. The blurring at the
edges is in the form of convolution. Thus, the relation of blurring
to the PSF is not direct. Hence, blurring of an edge is the
superposition of all the individual points constituting the edge,

IET Image Process., 2020, Vol. 14 Iss. 2, pp. 297-309
© The Institution of Engineering and Technology 2019

297



often referred to as edge spread and the corresponding blurring
function is referred to as the edge spread function (ESF).

The recovery of PSF requires N × N independent observations.
This results in an ill-posed problem due to the presence of noise
which is often solved by employing various priors such as [1–4].
However, blur amount is a scalar quantity and can be estimated
accurately at edge points. Kumar et al. [5] introduced the concept
of blur measurement function. In this paper, we further extend this
concept to characterise and decompose the PSF using variation of
blur amount across the edge orientation unlike state-of-the-art
methods which evaluate it at N × N points. We refer to this as the
blur parameter locus curve (BPLC). We utilise BPLC for
calibrating the scale map for an anisotropic PSF (PSF after unequal
vertical and horizontal image resizing, asymmetrical (astigmatic)
PSF of optical/imaging systems) which induces different amounts
of blur at different directions at a given scale. We also develop the
properties/constraints for PSFs based on BPLC. We use these
constraints to discard the erroneous blur values due to shadows and
false depth edges. The main contributions of the paper are as
follows:

• We present a novel classification of blur kernels that can be used
to analytically calculate the blur amount along any given
direction θ for a given PSF.

• We introduce the concept of the BPLC and address the
ambiguity of different blur amounts at different directions for a
given scale. This addresses the fundamental limitation of scale
map estimation application for the case of anisotropic PSF,
which is usually not considered in the state-of-the-art methods.

• We also demonstrate the effects of image resizing on the blur
and derive closed-form analytical expression for it using BPLC.
We apply these constraints to remove erroneous blur values due
to shadow and false edge to obtain more accurate (Reliable)
defocus map.

• We also present a novel methodology and analysis tools based
on BPLC for PSF characterisation from a single image.

The paper is organised as follows: Section 2 discusses related
works. Section 3 presents the classification of the blur kernels and
PSF. Section 4 introduces BPLC along with the analytical
relationship between image resizing and the blur kernel. We
present the applications of the proposed BPLC theory in Section 5
and conclude the paper in Section 6.

2 Previous works
Richardson [6] estimated the blur PSF using an iterative approach
in a Bayesian framework. The recent state-of-the-art methods [1–4]
also estimate the PSF using an iterative procedure for the
underlying blurring optimisation problem along with different
priors like sparsity and constraint blur type. However, priors used
in these state-of-the-art methods may not hold, and the accuracy of
the estimated PSF is sensitive to window size. Even in case of the
accurate PSF estimation, parameterisation of estimated PSF and
relating it to the scale is required to address the scale ambiguity.
Hence, scale map estimation using spatially varying PSF extraction
is not a reliable and practical approach for general applications.
Similarly, state-of-the-art methods [7–9] employ the Gaussian
nature of defocus blur kernel for estimating the blur amount. These
state-of-the-art methods of scale map estimation for defocus blur
are quite fast and accurate. However, these methods are valid only
when the PSF is isotropic in nature.

Trentacoste et al. [10] chose the Gaussian blur PSF and studied
the effect of downsampling on the PSF. They derived the
relationship between downsampling and image blur PSF in a single
dimension and generalised it for higher dimensions. They created
perceptually similar images after downsampling by matching the
blur. However, they did not discuss the effect of downsampling on
oriented edges. Also, downsampling in random directions and
closed-form relationship for non-identical downsampling along
orthogonal directions have not been discussed in their work. In the
patent of Hong [11], downsampling is used to reduce the amount of
the defocus blur. The patent states that estimation of large blur

parameters is inaccurate. Hence, they claim that the use of
downsampling reduces the blur amount and improves the
estimation accuracy. However, no analytical justification or
relations are provided.

Qin et al. [12] use downsampling and upsampling blocks to
calculate the error between the high-resolution and low-resolution
images. Using this error, the high-resolution image is estimated.
They report that defocus plays an important role in estimating
high-resolution images. However, the effect of downsampling on
defocus blur has not been discussed. Pang et al. [13, 14] used
directional filter responses for distinguishing between motion blur
and defocus blur. These methods highlight the importance of the
use of PSF characteristics. However, for non-isotropic PSFs, which
commonly result from asymmetrical resizing of images or in
images captured through an asymmetrical optical/imaging system,
this would not be effective.

We observe that the state-of-the-art methods does not relate blur
parameter of PSF with scale while estimating scale map. Also,
these methods do not address scale ambiguity for anisotropic PSF.
Hence, these methods cannot be applied when PSF is not isotropic.
We introduce the concept of the BPLC to address this and provide
fundamental tools for PSF related analysis.

Yang and Qin [15] estimated the underlying blur kernel from a
single partially blurred image by classifying the blurred regions.
The sharp regions corresponding to blurred regions are restored by
utilising the estimated underlying blur PSF. Lu et al. [16] presented
an unsupervised method for domain-specific single-image
deblurring based on disentangled representations by splitting the
content and blur features in a blurred image using content encoders
and blur encoders. Such methods employ specific information for
recovery of underlying PSF and sharp image, however, such
information may not be available.

Xu et al. [17] proposed a deep convolutional neural network
trained after suppressing extraneous details and enhancing sharp
edges for extracting sharp edges from blurred images. Nimisha et
al. [18] proposed deep neural networks-based approach for end-to-
end motion deblurring by capturing the data prior for generating
and to discriminating between clean and blurred features. Nah et
al. [19] proposed a multi-scale convolutional neural network-based
end-to-end deblurring scheme that restores sharp images in an end-
to-end manner where blur is caused by various sources. Madam-
Nimisha et al. [20] proposed a Generative Adversarial Network-
based approach for an end-to-end deblurring network. Wang et al.
[21] estimated blur kernel in a transform domain, whereas the
deconvolution model is decoupled into deblurring and denoising
stages via variable splitting. The method utilises benefits of both
model optimisation and deep learning. These methods utilise
learning-based techniques to restore the sharp image from a blurred
image, however, performance of such methods is dependent upon
training images, type of blur PSF etc.

Kotera and Šroubek [22] utilised sparsity priors to recover a
sharp image from a single blurred image by maximising the
aposteriori information. Lai et al. [23] utilise the normalised
colour-line prior to estimate the single-image blur kernel. Bai et al.
[24] proposed a graph-based blind image deblurring algorithm by
interpreting an image patch as a signal on a weighted graph. The
method uses a reweighted graph total variation prior that can
efficiently promote a bi-modal edge weight distribution given a
blurry patch. Liu et al. [25] used image prior for image deblurring
based on a Super-Gaussian field model with adaptive structures.
Chen et al. [26] used local maximum gradient prior for recovering
the sharp image from the blurred image. Aljadaany et al. [27]
proposed an end-to-end deblurring deep networks system Dr-Net
based on the data fidelity and the image prior. Bai et al. [28] used
coarse-to-fine priors to estimate the underlying PSF and to restore
the deblurred image. These methods recover sharp image from the
blurred image by utilising various priors which may not be true in
general.

Sun et al. [29] estimated the underlying PSF by imposing a
patch prior specifically tailored towards modelling the appearance
of image edge and corner primitives. Vasu and Rajagopalan [30]
investigated the relation between the edge profiles present in a
motion-blurred image and the underlying camera motion
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responsible for causing the motion blur. Yang and Ji [31] presented
an interpretation of edge selection/reweighting in terms of
variational Bayes inference, and therefore developed a novel
variational expectation maximisation algorithm with built-in
adaptive edge selection for blind deblurring. These methods
demonstrate the importance of edge blur for determining/
characterising the underlying PSF. We utilise this concept and
propose BPLC for characterising the PSF. Similarly, Chakrabarti et
al. [32] modelled gradients in an image using an infinite mixture of
zero-mean Gaussian distributions to segment out blurred region
and Lin et al. [33] proposed the use of a separable coded aperture
to estimate depth from a single defocused image. This highlights
the importance of decomposing the PSF into separable form which
we have introduced in this paper by utilising the BPLC.

Hong and Park [34] recovered a sharp image from a single
motion-blurred image by estimating the underlying PSF using
anisotropic regularisation by an iterative process. Deshpande and
Patnaik [35] presented a uniform motion blur PSF estimation by
estimating the underlying parameters of the PSF using radon
transform. Similarly, Shi and Liu [36] proposed PSF estimation
algorithm based on gradient cepstrum analysis and Mosleh et al.
[37] estimated PSF using frequency spectrum. Dong and Ma [38]
proposed a novel variational method for single image blind
deblurring based on the fractional-order differential to overcome
the staircase effect produced by the total variation regularisation.
Pan et al. [39] used auto-correlation of the absolute phase-only
image in frequency domain to obtain underlying motion blur PSF
from single blurred image. These methods utilise specific features
of known blur type to estimate the underlying PSF and restore the
sharp image, thus these methods cannot be used for generalised
cases.

We observe from the state-of-the-art methods PSF estimation
for underlying blur is an ill-posed problem and require some prior
knowledge. We also observe that edges are important attributes for
blur PSF estimation. We propose the analysis and characterisation
of PSF based on the amount of blur at the edges using the
introduced concept of BPLC.

3 Blur kernel classification
We first discuss some properties related to PSFs and blur kernels.
We use these properties to classify the blur kernels. We later use
these properties to develop useful mathematical tools for analysis.

3.1 Isotropy

A blur kernel is said to be isotropic if its spread amount (degree of
energy distribution) is circular in shape irrespective of the possible
variation of magnitude within the support so long as the variation is
not a function of θ. Equation (1) shows an example of isotropic
PSF f 1(x, y) which has identical blur parameter σ for all directions.
Whereas (2) is an example of anisotropic PSF f 2(x, y) having blur
parameters σ1 and σ2 along X and Y directions which induces
direction-dependent blur.

f 1(x, y) =
1

2πσ
2 e−((x2 + y2)/2σ2) (1)

f 2(x, y) =
1

2πσ1σ2

e−((x2/2σ1
2) + (y2/2σ2

2)) (2)

The degree of energy distribution is usually measured in terms of
the blur parameter. However, the blur parameter itself has different
definitions for different blur kernels, e.g. spread length for motion
blur, the standard deviation for defocusing. Any suitable definition
can be taken for calculating the blur parameter for PSF. Thus, the
isotropy of a PSF is with respect to the chosen definition of blur
parameter, i.e. the PSF may be isotropic for one blur parameter
(e.g. variance) and may not be isotropic with respect to the other
(e.g. spread length).

3.2 Degeneracy and closed-form

We define properties such as degeneracy and closed-form to
efficiently characterise the blur computation and representation of
the blur kernels.
 

Definition 1: (Degeneracy): Any given blur kernel f
^

θ(r) that
has energy distribution only along any one single direction θ is
called a degenerate blur kernel and direction θ is referred to as the
principal direction.

A typical example of such a blur kernel is the (linear) motion
blur kernel. For the linear motion blur kernel, all the blurring
energy is oriented in the motion direction. As an example, for
uniform linear motion, f

^

θ(r) will be a rectangular pulse in r, with
the pulse width proportional to the velocity.
 

Definition 2: (Closure): Any given blur kernel that can be
expressed as convolution of two or more degenerate blur kernels is
called a closed-form blur kernel and corresponding directions of
the component degenerate blur kernels are referred as the principal
directions.

The ideal defocus blur kernel is usually expressed as a
symmetrical Gaussian kernel. This kernel can be decomposed into
the convolution of two degenerate blur kernels in any two
perpendicular directions. Hence, the defocus blur kernel is one
example of a closed-form blur kernel, and, in this case, the
principal directions are not unique. For any general optical system,
the blur kernel can be arbitrary shaped with directional dependent
blur parameter σ.

3.3 Completeness and blur kernel model

The blur kernels can be different for various sources of blurs, e.g.
uniform for motion blur, Gaussian for defocus blur etc. Thus, the
blur parameter has a different definition for different blur kernels.
Measurement of blur is performed on the basis of assumed nature
of underlying blur PSF, e.g. [7–9]. Thus, measurement function
may not be same as underlying blur kernel of the PSF. However,
underlying blur PSF can be modelled and analysed using
measurement function if the blur parameters of two have one to
one correspondence. We refer to this property as Completeness of
blur kernel with respect to measurement function as in Theorem 1.
 

Theorem 1: (Completeness): If parameter η for PSF f (x; η) has
a linear relation with spread d as well as equivalent blur parameter
σ, then the representation of f (x; η) with respect to the
measurement function is complete.
 

Proof: The spread d varies linearly with η for PSF f (x; η) and
equivalent parameter σ has linear relationship with η

η = k1d; σ = k2η (3)

From (3)

σ = kd

Under scale and space transformations f of blur kernel, the
corresponding spread d has a one-to-one correspondence to
equivalent blur parameter σ.

f(d)k = f(σ)

Hence, the equivalent representation of f (x; η) with respect to the
measurement function is complete. □

Using Theorem 1, the underlying blur kernel which is complete
with respect to measurement function can be modelled and
analysed with the help of measurement function. We choose a
measurement kernel for blur measurement as a Gaussian kernel and
have derived the results accordingly from now-on. These results
can be modified easily for other kinds of measurement functions.
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3.4 Blur computation from PSF

Blur measurement can be performed in many ways, e.g. blur
parameters, variance, blur radius etc. In this paper, we estimate the
blur amount caused by underlying PSF in terms of associated blur
parameters. We present analytical blur computation for complete
degenerate and closed-form PSF in following propositions.
 

Proposition 1: Blur parameter with respect to Gaussian
measurement function in some given direction θ for a complete
degenerate PSF f

^

θ1
(r) having principal direction θ1 can be obtained

as the projection of equivalent blur parameter σ1 of corresponding
Gaussian function model for PSF f

^

θ1
(r) along the given direction

as given in the following equation:

σθ
2 = σ1

2cos2(θ − θ1) (4)
 

Proof: We take a step edge AU(x′) + B along y′ such that its
perpendicular makes angle θ with x axis. The principal direction
for degenerate Gaussian kernel is along u direction which makes
angle θ1 with x axis. Since, PSF f

^

θ1
(r) is complete with respect to

Gaussian measurement function, hence can be analysed using
equivalent Gaussian function model for PSF. Thus, the blurred
edge Ib is the convolution of the step edge and the Gaussian
function model for PSF with equivalent blur parameter as σ1.
Reference axis diagram is shown in Fig. 1. 

Ib = (AU(x′) + B) ∗
e−(u2/2σ1

2)

2πσ1
2

Taking Fourier Transform

ℱ{Ib} = ℱ{AU(x′) + B}
ℱ{e−(u2/2σ1

2)}

2πσ1
2

= ℱ{AU(x′) + B}e−π2u22σ1
2

Decomposing into x′ and y′ coordinate system and putting y′ = 0

ℱ{Ib} = ℱ{AU(x′) + B} e−π2(x′cos(θ − θ1) − y′sin(θ − θ1))
2
2σ1

2

≡ ℱ{AU(x′) + B} e−π2(x′cos(θ − θ1))
2
2σ1

2

we note that y′ = 0 as there is no variation in y′ direction, leading
to the above simplification. Now comparing with Fourier
Transform of standard blur kernel

σθ
2 = σ1

2cos2(θ − θ1) ◻
Fig. 2 shows the blur parameter variation with the angle for the

case of the degenerate blur kernel. We observe from the figure that
estimated and calculated values are close. There is large error in
case of smaller blur amounts as the estimation process becomes
erroneous while estimating very low amount of blur. This verifies
the blur kernel characterisation for degenerate case as given in
Proposition 1.
 

Proposition 2: Blur parameter with respect to the Gaussian
measurement function in some given direction θ for a complete
closed-form PSF having principal directions θ1 and θ2, can be
obtained as sum of projections of equivalent blur parameters σ1 and
σ2 as given in (5). σ1 and σ2 are equivalent blur parameters
corresponding to Gaussian function model for PSF with respect to
Gaussian measurement function.

σθ
2 = σ1

2cos2(θ − θ1) + σ2
2cos2(θ − θ2) (5)

 
Proof: Proceeding same as in Proposition 1, we obtain

Ib = (AU(x′) + B) ∗
1

2πσ1σ2

e−(u2/2σ1
2) ∗ e−(v2/2σ2

2)

u and v are not necessarily perpendicular direction

ℱ{Ib} = ℱ{AU(x′) + B}

×
1

2πσ1σ2

ℱ e−(u2/2σ1
2) ℱ e−(v2/2σ2

2)

= ℱ{AU(x′) + B}e−π2u22σ1
2
e−π2v22σ2

2

As the direction is preserved in Fourier Transform, we decompose
in perpendicular directions and taking components in that direction

ℱ{Ib} ≡ ℱ{AU(x′) + B} e−π2(x′cos(θ − θ1))
2
2σ1

2

× e−π2(x′cos(θ − θ2))
2
2σ2

2

Now comparing this with standard blur kernel Fourier Transform,
we get

σθ
2 = σ1

2cos2(θ − θ1) + σ2
2cos2(θ − θ2)

Thus, using Propositions 1 and 2, the blur amount can be computed
efficiently at any direction in terms of associated blur parameters of
equivalent Gaussian function model for given complete PSF with
respect to Gaussian measurement function. □

4 BPLC
Except for some special cases, e.g. microscopic, astronomical
imaging, edges are common structural features appearing more
often in any scene than the isolated points. Blurring of an edge is
superposition of all the individual points constituting the edge often
referred to as edge spread and corresponding blurring function is
referred to as ESF. However, all blur PSF that produces the same
amount of blur with respect to measurement function are
equivalent as shown in Theorem 2.
 

Theorem 2: Given a blur PSF f (x, y; σ), the equivalent blur
spread at an edge with orientation perpendicular to θ can be given
by the equivalent blur PSF g(x; σ) with blur parameter σθ equal to
the resultant blur present at the edge due to f (x, y; σ) θ with respect

Fig. 1  Reference axis
 

Fig. 2  Blur parameter for degenerate blur kernel; Here angle denotes
edge orientation
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to measurement function as in (6). Here, x′ denotes direction along
θ orientation.

g(x′; σθ) ≡ f (x, y; σ) θ (6)
 

Proof: If PSF of a given system is f (x, y; σ) and the given edge
is oriented in perpendicular to θ direction (along y′ direction), then
we write the blurred edge Ib as a convolution of the step edge
model AU(x′) + B with parameters A and B and blur PSF f (x, y; σ).

x′ = xcos θ + ysin θ; y′ = xsin θ − ycos θ

Ib = (AU(x′) + B) ∗ f (x, y; σ)
(7)

If edge is along θ + 90, the resultant blur amount present at the
edge can be modelled with standard blur PSF g(x′; σθ) which is the
only function of x′ and constant along edge direction y′ and having
blur parameter σθ. Then

Ib(θ) = (AU(x′) + B) ∗ g(x′; σθ) (8)

Now applying measurements on both the original and equivalent
models of the blur edge as given in (7) and (8), respectively, we get

M(Ib) = σθ, M(Ib(θ)) = σθ (9)

From (9), we deduce that the two models given in (7) and (8) are
equivalent with respect to measurement. Hence

g(x′; σθ) ≡ f (x, y; σ) θ ◻
The equivalence of PSF is with respect to measurement

function. The equivalent blur kernel for a specific source can be
estimated from knowledge of underlying original kernel, for
example in case of defocus (Gaussian kernel) f and g both are
Gaussian. This is because the only constraint on the equivalent blur
kernel at any edge is equal blur amount in a perpendicular direction
to edge with respect to the measurement function. Thus, we can
choose any equivalent blur kernel such that it produces equal blur
amount at the edge as to original.

Since, the nature of defocus blur kernel is Gaussian, thus we
choose the measurement function as Gaussian. Also, we choose
equivalent blur kernel as measurement function, i.e. Gaussian for
simplicity utilising Theorem 2. Thus, the estimated blur parameter
σ using Gaussian measurement function is directly employed to
model the underlying PSF with Gaussian function.

To be able to model the underlying blur PSF with measurement
function to further analyse, its completeness with respect to
measurement function is must as shown in Theorem 1. The
completeness theorem enables us to model the underlying blur PSF
at an edge with measurement function with parameter taken as an
equivalent blur parameter σ. From Theorem 2, we conclude that
specifying ESF rather than PSF is more useful for specifying the
blur amount for edge structures than for point structures for
commonly encountered image data (barring images from
microscopic imaging and astronomy). However, since the ESF is

also dependent upon the edge orientation, it becomes necessary to
record ESF for all possible edge orientations for a given PSF to
specify the blur amount in all directions.

However, we instead construct a blur parameter (σ) locus which
gives us every information about the blur amount for all edge
orientations with respect to a selected measurement function. We
call it the BPLC. This curve carries the normalisation information
of the blur parameter σ with respect to orientation for any given
scale. We construct the BPLC from the PSF as follows:

Construction of BPLC

Step 1: Obtain PSF for some fixed scale (say 1).
Step 2: Adopt the specification for σ.
Step 3: Take a step edge in orientation θ + 90° and blur it with
given PSF.
Step 4: Determine σ for the edge using criteria in Step 2.
Step 5: Mark point at σ distance from the origin in θ direction.
Step 6: Repeat Steps 3, 4 and 5 for all orientation θ.
Step 7: Interpolate the points to get continuous BPLC.

We refer to BPLC at unity scale as normalised BPLC. Now, from
the normalised BPLC, we can obtain the blur parameter σ for other
scales in any direction by just multiplying by scale factor. For the
case of defocus, the scale corresponds to the depth of objects from
the lens. In case of rotational blur, scale corresponds to
perpendicular distance from axis of rotation. Fig. 3 shows few
examples for the BPLC along with the corresponding PSFs. The
radial distance of any point on BPLC specifies the resultant blur in
corresponding direction in the figure.

In general, only blurred image is provided in place of PSF. In
such cases, we segment the image such that segments belong to the
same scale using colour, contours, e.g. [40–42]. Then, we obtain
the BPLC for different segments as discussed above.

The methods given in Propositions 1 and 2 can be used for
generating the BPLC efficiently. The equivalent blur at any edge
point can be equivalently written as sum of projections of PSF
components, which is the same as the contribution of blur amount
from the neighbouring points lying on the edge. These
decompositions provide a powerful tool for various forms of
analysis. In case of the complete closed-form PSFs and complete
degenerate PSFs, BPLC is computed very efficiently using these
methods. BPLC is obtained from the PSF, however, BPLC is a
more useful representation than the PSF itself for blur related
analysis as edges are primarily occurring features in images. The
key differences of BPLC over PSF representation of blur are as
follows:

• The BPLC is easy to estimate from a blurred image as it only
requires blur amount in various directions – in short, it is only a
chart of blur amount in all orientations and at all locations and
measured using our selected measurement function (Gaussian
kernel in our case) while, in general, the estimation of the PSF
from a given image is an ill-posed problem as it is specified over
the entire support of PSF, which is an entire 2D function.

• The BPLC yields a direct relation between the blur amount and
the blur parameter of PSF, whereas PSF may not have such an
explicit relation with the blur amount. Completeness of PSF
with respect to measurement function as given in Theorem 1
allows us to model the PSF using associated measurement
function.

• The BPLC contains the blur amount variation in all directions at
some given scale, hence, carries normalisation information for
the blur amount in various directions. This is essential
information for scale map estimation in case of anisotropic
PSFs. Again, the PSF does not contain such information
explicitly.

Fig. 4 shows a test image blurred with Defocus Blur PSF with blur
parameter σ as 1 in the horizontal direction and 3 in the vertical
direction. We observe from the figure that the two rectangles
appear at different depths in depth map obtained without resolving

Fig. 3  BPLC and PSF for
(a) Degenerate kernel, (b) Elliptical kernel. Red curve denotes PSF and blue curve
denotes corresponding BPLC
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scale ambiguity. The two rectangles appear at the same depth in
depth map obtained after correcting scale ambiguity using BPLC. 

• The BPLC can be used to characterise and compare different
PSFs with respect to a measurement function. Some of these
properties are described in Section 5.2.

• Even a non-parametric PSF can also be parameterised using the
BPLC with respect to a selected measurement function. Few
examples of such PSFs are shown in Fig. 5. We observe that
these PSFs do not have the parametric form, however using
BPLC these PSFs can be expressed as orientation varying blur
parameter.

Thus, we observe that the BPLC is a more convenient
representation compared to PSF for blur analysis.

4.1 Image resizing and BPLC

As discussed above, image resizing is a very common operation in
image processing. We compute the change in blur amount due to
image resizing as shown in Theorem 3.
 

Theorem 3: The effect of image downsampling on the blur
parameter can be equivalently obtained by downsampling the
BPLC by the same factors.
 

Proof: The blur parameter along any direction can be obtained
from the BPLC. Since blur parameter σ is the distance from the
origin of the BPLC in the given direction

x
2 + y

2 = σ
2

Downsampling image by a factor M in horizontal and by factor N
in the vertical direction the new axes become x′ and y′, which are
related to axes x and y as given below.

x′ =
x

M
; y′ =

y

N

The equivalent downsampled BPLC on modified axes becomes as
follows:

M
2
x′2

σ
2 +

N
2
y′2

σ
2 = 1

To compute the blur values in direction having slope m, we
substitute y′ = mx′ to find the new location (x′, y′).

M
2
x′2

σ
2 +

m
2
N

2
x′2

σ
2 = 1

⇒ x′2 = σ
2 1

m
2
N

2 + M
2

The new blur parameter σ f  is the distance of the new intersection
point (x′, y′) from the origin.

Fig. 4  Effect of anisotropic PSF on scale map
 

Fig. 5  Examples of observable and non-observable blur kernels and
corresponding BPLCs, first two rows show the example of observable PSFs
and last two rows show example of non-observable PSFs. Here angle
denotes edge angle
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σ f
2 = x′2 + y′2

= σ
2 m

2 + 1

m
2
N

2 + M
2

(10)

The σ f  obtained from downsampling the BPLC as given by (10).
Hence, blur parameter of the downsampled image can be
equivalently obtained by downsampling the BPLC itself by the
same factors in the corresponding directions. □

Thus, we can downsample the BPLC to get the new blur
parameters for all directions. However, the downsampled BPLC is
not valid for the downsampled image as the directions of the edges
will also change with downsampling. However, change in direction
can be obtained using downsampling factors M and N. Using these
relations, new BPLC can be obtained from old BPLC. Fig. 6 shows
downsampled BPLC and BPLC for downsampled image by factor
2 in the vertical direction. We observe from the figure that the
downsampled BPLC and BPLC for downsampled image are not
the same.

Fig. 6 shows downsampled BPLC and BPLC for a
downsampled image by factor 2 in the vertical direction. Now, if
we apply non-identical downsampling on the orthogonal directions,
then σscaled is dependent on orientation of the edge. We
downsample the image by a factor 2 only in the vertical direction.
Blur estimates using (10) match with those observed using
experiments. Matching error is large in case of small amount of
blur as estimation of small blur results in greater inaccuracies.
Fig. 7 shows the relation between σscaled and σorig for various
oriented edges (0°, 15°, 30° and 90°). 

The estimated blur values σorig and σscaled follow a linear
relationship as expected. Besides that, the slope is same as that
obtained from (10) for various orientations which verifies the
correctness of the proposed theory for the downsampling along
with correctness of our blur kernel decomposition methodology.

5 Applications of BPLC
5.1 Reliable defocus map estimation

Depth from defocus is an active area of research. Edges are high
frequency contents of an image and are most suitable for defocus
extraction because they provide accurate localisation. Accurate
edge localisation is essential for accurate blur estimation. However,
defocus estimation often becomes erroneous due to the presence of
non-ideal edges, false edges, texture edges or other types of blurs
than defocus, e.g. motion blur. Elder and Zucker [43] proposed a
local scale (σ of the Gaussian filter) control for edge detection and
defocus blur estimation. Using this, local minimum reliable scale,
accurate edges are obtained. These edge points are used to estimate
the amount of defocus blur for depth information.

The state-of-the-art methods [3, 44–48] rely on machine
learning techniques for inferring depth map of a given image.
These techniques, utilise texture features to infer depth. However,
performance of these techniques heavily depends upon whether
training and testing images are of similar scenes and whether they
are both captured using similar imaging systems. Also, these
techniques produce a coarse depth of the scene and fine depth-
structures are not preserved in the depth map, as opposed to edge-
based defocus map estimation techniques.

Various methods such as [7–9, 49, 50] estimate defocus blur at
the edge locations by employing different strategies. Zhuo and Sim
[9] produce reliable defocus map in the presence of noise
employing gradient ratio at the edges. Srikakulapu et al. [51] use
reliable local scale using Elder and Zucker's method [43] to obtain
the edge points at which defocus is estimated. However, the
presence of non-ideal edges, false edges and other types of blurs
affect the performance of these techniques.

Karaali and Jung [52] increased the accuracy of the estimated
defocus map of [9] by selecting consistent edge points across scale
in a ‘Canny’ edge detector [53]. Then, the scale for defocus
estimation (re-blurring σ in [9]) is adaptively taken as half of the
maximum detectable edge-scale for consistent edge points. This
method mainly focuses to achieve accuracy in the estimated

defocus map by taking appropriate adaptive scale in defocus
measurement using Zhuo's method [9] for different edges.
However, errors due to shadow, false edges may still persist.

All the above methods are edge-based methods, in which
defocus blur parameter σ is estimated at the edges. This map
containing defocus blur information only at edges is referred to as
‘Sparse Defocus Map’. The estimated blur parameter σ for defocus
blur corresponds to the depth, i.e. higher defocus values represents
higher depth. So, we propagate this information present at edges in
Sparse Defocus Map over the entire image to generate the ‘Full
Defocus Map’ using Levin's [54] closed-form colourisation scheme
based on texture, colour correlation.

Usually, the defocus blur kernel is modelled as Gaussian
function. The inaccuracies arising due to the presence of false and
non-ideal edges can be corrected by exploiting the blur kernel
properties. Direct kernel fitting may not always be accurate due to
the presence of noise. We use BPLC characteristics for
downsampling to filter out ambiguous defocus values. This not
only yields a more accurate defocus map but also measures the
reliability of the estimated defocus values.

In this section, we introduce the framework of the proposed
method for reliable defocus map estimation. Defocus blur is
Gaussian in nature. Higher depth induces higher defocus blur.
Hence, depth information can be captured by measuring the blur
parameter σ for underlying defocus blur kernel. However,
measurement of defocus blur using σ is often erroneous due to the
presence of non-ideal, false edges, noise etc. This error can be
limited by imposing properties of associated defocus blur kernel.
Effect of downsampling or scale-space related constraint for
defocus blur kernel is one such property. Trentacoste et al. [10]
derived the effect of downsampling on the defocus blur kernel as
given by the following equation:

σ ⟶
↓ d σ

d
(11)

Fig. 6  BPLC for circular blur kernel with σ = 2 for
(a) Downsampled BPLC, (b) Downsampled image by factor 2 in vertical direction

 

Fig. 7  Non-identical downsampling (downsampling by 2 vertically)
(a) 0°, (b) 15°, (c) 30°, (d) 90°
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Blur parameter σ reduces to σ /d after downsampling by factor d,
which is a simple case of generalised result derived in (10). We
impose this constraint to remove the non-ideal, false edges
attributed to the erroneous defocus map.

5.1.1 Proposed reliable defocus map creation: In this
subsection, we describe the proposed method for reliable defocus
map estimation. Fig. 8 shows the flow diagram for the proposed
reliable defocus blur estimation framework. First, we estimate the
sparse defocus map S and S2 of the original image I as well as the
resized image I2, respectively. We have used Zhuo's method [9] for
sparse defocus map creation and a downsampling factor of 2 along
both horizontal and vertical directions. We then downsample the
sparse defocus map S using nearest neighbour filter to obtain
sparse defocus map Sd. The calculated sparse defocus map Sd is
compensated for downsampling as in (11) to obtain the sparse
defocus map Se. Then, we calculate the reliability metric R at every
point in the image where the sparse defocus map is non-zero, i.e. at
the edges in edge map e. We create the final defocus map based on
the reliability metric.

The reliability metric R(x) at the point x is defined as the
relative error between the defocus blurs of the original and resized
images after imposing the blur transformation at each edge point as
given in (11), i.e. between Se and S2 as given in the following
equation:

R(x) =
S2(x) − Se(x)

Se(x)
(12)

We retain defocus blur values at only those edge points where the
reliability is greater than a threshold (in other words, the relative
error is less than a chosen threshold). Figs. 9 and 10 highlight the
effect of various reliability threshold on the sparse defocus map
and full defocus map for selected sample image. 

We observe from the figure that the lower threshold values of
reliability score limit the number of edge points in sparse defocus
map drastically. This may result in poor quality of full defocus map
as shown in Fig. 10. Whereas, large values of the reliability
threshold result in inclusion of erroneous edge points in the sparse
defocus map, which in-turn produce erroneous full defocus map as
shown in Fig. 10. So, we choose a mid-range value 40% for the
reliability threshold. We also skip relative errors for blur lesser than
a blur threshold 0.5, as blur estimation is usually inaccurate for
lower blur values. Both the reliability threshold and the blur
threshold govern the number of edge points that get included in the
reliable defocus map. Algorithm 1 (see Fig. 11) shows sample
pseudo code for generating Reliability Map R. The proposed
method calculates the reliability map based on the scaling
constraint as in (10) to reduce the error of erroneous blur detection
at the non-ideal, false edge points to obtain more accurate defocus
map.

Holes are another main source of error in edge-based defocus
map estimation [55]. In this paper, we have not applied hole filling
in order to have a one to one comparison with the state-of-the-art
Karaali method [52].

5.1.2 Proposed defocus map evaluation framework: Defocus
map cannot be directly compared with depth map as depth and
defocus are related to each other by (13). Conversion of defocus to
depth requires the associated camera parameters k1 and k2.
However, usually, these parameters are not available. Also,
estimated defocus value results in value proportional to original
defocus value due to effect such as downsampling as shown in
(11), matting [54] required for full defocus map estimation from
sparse defocus map, etc. We use optics to relate defocus parameter
σ to depth d as given by (13) based on framework discussed in
[56]. Here, k1 and k2 are camera parameters that are always positive

σ = k1 −
k2

d
⇒ d =

k2

k1 − σ
(13)

Estimation of defocus is relative in nature, i.e. only ordering of
defocus with respect to depth is retained. So, we estimate the
parameters k1 and k2 for the given image. Equation (14) shows
measurement model of depth and defocus. Here, w represents the
measurement error.

Fig. 8  Flow diagram for reliable blur estimation
 

Fig. 9  Effect of various reliability score threshold on sparse defocus map
 

Fig. 10  Effect of various reliability score threshold on full defocus map
 

Fig. 11  Algorithm 1: Reliability map estimation
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σ = k1 − k2

1
d

+ w (14)

Now, we stack all the depth and defocus values and obtain system
of linear equations given by (15)

σ1 = k1 − k2

1
d1

+ w1

⋮

σn = k1 − k2

1
dn

+ wn

σ1

⋮

σn

Σ

=

1
1
d1

⋮ ⋮

1
1
dn

H

k1

−k2

K

+

w1

⋮

wn

W

(15)

Σ = HK + W ⇒ K
^

= (HT
H)−1

H
T
Σ (16)

Using (15) and (16), we estimate the parameters k1 and k2 which
minimises the least-square error. Thus, the estimated parameters k1

and k2 measures the distortions in the relative defocus-depth
correspondence. The positive values of parameters k1 and k2 denote
that the camera is focused at the nearest object in the scene from
the camera and defocus blur increases with the depth. In such a
case, maximum defocus blur equals to be k1 at the farthest object in
the scene. While positive value of k1 and negative value of k2

denote that the camera is focused at the farthest object in the scene
and defocus blur value decrease with depth. Negative value of k1 is
not possible and denotes serious errors in estimation process. These
two types of focusing condition give rise to Focal Plane Ambiguity
and can be removed using method such as [57, 58]. Generally,
images of the scene with focus at nearest object are taken for full
defocus map quality evaluation. In such cases, distortions in
defocus-depth pair appear as erroneous values (negative values) of
k1 and k2. Thus, accuracy of an estimated defocus map can be
assessed using this framework.

5.1.3 Results: We carried out a quantitative evaluation of
proposed reliability method for few images from [44] where
ground truths are available. Our test environment contains
MATLAB 2014 in Linux environment with processor Intel(R) i5
CPU 650@3.20GHz. Fig. 12 shows the colourmap representation
for both ground truth depth maps and estimated defocus maps. 

We transform estimated defocus values into depth values using
(13) and evaluate the accuracy of depth estimation using estimated
k1 and k2. We use relative error ‘rel’, logarithmic error ‘log10’ and
root mean square error ‘RMSE’ defined in [44] for depth map error
calculation. Relative error ‘rel’ is defined as mean fraction error
with respect to depth as given in (17). Here, de is estimated depth, d
is ground truth depth and N is number of sample points at which
depth is estimated, i.e. image size

rel = ∑
i = 1

N
1
N

de − d

d
(17)

Logarithmic error ‘log10’ is defined as mean of Logarithmic of the
ratio of estimated depth to ground truth depth as given in (18).

log 10 = ∑
i = 1

N
1
N

log10

de

d
(18)

Higher values of ‘rel’, ‘log10’ and RMSE represent a higher error
in the estimated defocus values. These errors are with respect to
estimated k1 and k2 which minimises the RMSE as discussed in
Section 5.1.2. Following are two examples of such an evaluation
for images from [44]. The ground truth in these examples
represents the depth maps, while state-of-the-art methods estimate
defocus maps.

Table 1 shows error metrics for the example images shown in
Fig. 13. We observe that the method of Zhuo and Sim [9] and
Karaali and Jung [52] estimate parameter k2 as a negative quantity
which must be positive as discussed in the previous section
(camera is focused at the nearest object of the scene). Also, the
proposed method produces defocus map with least error metrics.
We thereby conclude from Table 1 that the proposed method
produces a more accurate defocus map compared to state-of-the-art
methods [9, 52].

We also generated the full defocus map for a few test images
with and without correction and performed a qualitative
comparison. The results are shown in Fig. 14. First column shows
the test images, the second column shows the defocus map results
for Zhuo's method [9], third column shows defocus map obtained
using Srikakulapu's method [51] without applying the hole filling,
fourth column shows defocus map for Karaali's method [52] by
utilising edge-aware matting given in [52], fifth column shows
defocus map for Karaali's method [52] using Levin's [54] closed-
form matting and last column shows defocus map obtained with
the proposed correction. Sky region in the third image introduces
large error in estimated defocus map as no defocus information is
present for such regions. These regions are referred as ‘Hole
regions’ and can be efficiently corrected using [55]. We observe
from the figure that the defocus map obtained after correction is far
more accurate and preserves the depth order of the scene in defocus
maps compared to state-of-the-art methods. Karaali's method [52]
by utilising edge-aware matting Karaali's method is more suited to
images with less finer texture/details and does not work well for
common images. While Karaali's method [52] using Levin's [54]
closed-form matting preserves the fine details in the defocus map
corresponding to scene structure. However, Karaali's method does
not effectively remove edge locations corresponding to erroneous
defocus values which in turn result in the erroneous defocus maps.
Similarly, defocus maps obtained using Zhuo's method [9] and
Srikakulapu's method [51] also contain erroneous regions. Thus,
the proposed method results in more accurate and reliable defocus
map creation compared to state-of-the-art methods. More results
can be found in [59].

Fig. 12  Colourmap for defocus map representation
 

Table 1 Example 1: Depth estimation accuracy
Image Method k1 k2 rel log10 RMSE

Zhuo [9] 0.693 −0.869 1.224 1.764 51.315
Img1 Karaali [52] 0.783 −0.316 1.062 2.069 50.505

Proposed 1.186 0.866 0.916 1.322 49.403
Zhuo [9] 0.655 0.018 0.997 2.759 47.51

Img2 Karaali [52] 0.540 −0.601 1.179 1.804 48.45
Proposed 0.988 0.650 0.921 1.344 46.96
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5.2 PSF characterisation using BPLC

In this section, we develop and describe some more results that can
be used for PSF characterisation. Firstly, the closed-form blur PSF
can be expressed with two perpendicular degenerate blur kernel
components as in Theorem 4. Thus, only these two perpendicular
components are observable.
 

Theorem 4: Any closed-form blur kernel which is complete
with respect to Gaussian measurement function can be equivalently
expressed as another closed-form blur kernel with two
perpendicular degenerate blur kernel components.

The PSF can be estimated by estimating the two perpendicular
degenerate blur kernel components. The nature of energy
distribution for a given degenerate PSF can be inferred from
gradient profile at the edge perpendicular to the principal direction
of the degenerate PSF.

I = (AU(x) + B) ∗ f (x; σ)

∇I = ∇((AU(x) + B) ∗ f (x; σ))

= (∇(AU(x) + B)) ∗ f (x; σ)

= (Aδ(x)) ∗ f (x; σ)

∇I = A f (x; σ)

(19)

Equation (19) shows that the gradient profile at step edge yields the
resultant blur kernel in perpendicular direction. We use this result
in Proposition 3 to estimate the full closed-form PSF.
 

Proposition 3: Any closed-form blur PSF can be obtained using
gradients Ix and Iy

1 in two perpendicular principal directions of
equivalent closed-form blur PSF as given by (20).

F(x, y) =
Ix ∗ Iy

1

Ix ∗ Iy
1 (20)

Fig. 13  Sample quantitative comparison of defocus map estimation, defocus maps in second row correspond to Img 1 and its ground truth given in first and
second columns of first row, respectively, and defocus maps in third row correspond to Img 2 given in first row

 

Fig. 14  Defocus map comparison, Column (a) shows test images, Columns (b), (c), (d) and (e) show defocus maps obtained using Zhuo [9], Srikakulapu
[51], Karaali1 [52], Karaali2 [52] and proposed methods respectively; Karaali2 utilises edge-aware matting given in [52] to obtain full defocus map from
sparse defocus map, Karaali2 utilises Levin's [54] closed-form matting to obtain the full defocus map from the sparse defocus map
(a) Image, (b) Zhuo [9], (c) Srikakulapu [51], (d) Karaali1 [52], (e) Karaali2 [52], (f) Proposed
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Proof: As given in (19), gradient gives profile of underlying

equivalent blur kernel at edge in perpendicular direction. If blur
PSF F(x, y) has two principal components f 1(x; σ1) and f 2(y; σ2)
with parameters σ1 and σ2 in x and y directions, respectively, the
blur PSF can be recovered as follows using gradient edge profile at
the step edge with parameters A1 and B1.

F(x, y) = f 1(x; σ1) ∗ f 2(y; σ2)

I = (A1U(x) + B1) ∗ F(x, y)

Ix = A1δ(x) ∗ f 1(x; σ1) ∗ f 2(y; σ2)

Ix = A1 f 1(x; σ1)

Similarly, from gradient profile at step edge with parameters A2 and
B2 in the perpendicular direction

I
1 = (A2U(y) + B2) ∗ F(x, y)

Iy
1 = A2 f 2(y; σ2)

Now, the convolution of Ix and Iy
1 along with normalisation, blur

PSF F(x, y) can be recovered

F(x, y) =
Ix ∗ Iy

1

Ix ∗ Iy
1

Thus, any closed-form blur PSF can be obtained using gradient in
two perpendicular principal directions of the equivalent closed-
form blur kernel. □

Fig. 15 shows the gradient profiles of example blur kernels in
the principal direction. Size of the PSF can be retrieved from the
length of the gradient. The underlying PSF can be recovered by
convolving the two blur gradient profiles in two principal
directions. We refer to a PSF as Observable, if the PSF can be
equivalently expressed as closed-form blur kernel with two
perpendicular degenerate PSFs as in Theorem 4. Such a PSF can be
recovered using Proposition 3. However, principal directions and
completeness of the PSF may not be available at all in general as
we are provided only the blurred image observation. Convexity of
BPLC can be used to determine the observability of a PSF as
shown in Theorem 5.
 

Theorem 5: BPLC of a complete observable blur kernel
inscribes a convex region.
 

Proof: Theorem 4 shows that any complete closed-form blur
PSF can be equivalently expressed as a closed-form PSF with two
perpendicular components. So, the resultant blur σ f  in direction θ
can be expressed in terms of and blurs of degenerate components
with blur parameters σ1 and σ2.

σ f
2 = σ1

2cos2
θ + σ2

2sin2
θ

Thus, BPLC Γ can be written as a parametric form given by (21).

Γ(θ) = (σ1cos θ, σ2sin θ) (21)

‘Signed Curvature’ κ for parametric (r(t), s(t)) is given by (22).

κ =
r′s′′ − s′r′′

(r′2 + s′2)
3/2 (22)

Thus, the curvature of the BPLC Γ is

κ =
σ1σ2

(σ1
2sin2

θ + σ2
2cos2

θ)
3/2

So, ‘Signed Curvature’ κ is positive throughout hence the curvature
is in the same direction. Thus, BPLC Γ inscribes a convex region.
□

In general, determining the convexity is an NP-hard problem.
However, the convexity of any curve can be easily determined
from number of extrema as given in Proposition 4.
 

Proposition 4: BPLC of any blur kernel is observable if number
of minima is either two or uncountable.

From Theorem 5, either BPLC of an observable PSF is
constant, i.e. uncountable minima as all values are same or has two
minima. Using this property, we determine from the BPLC if the
PSF is observable. However, it is only a necessary condition and is
not sufficient for the observability.

Fig. 5 shows examples of observable and non-observable blur
PSFs. We observe that the nature of BPLC is convex in either side
of axis joining the minima points on BPLC for observable PSFs in
first two rows. Thus, all these PSFs are observable with respect to
underlying selected measurement function, i.e. Gaussian kernel.
While PSFs in the last two rows result in non-convex BPLC,
hence, these kind of PSFs are not complete with respect to
measurement basis function, i.e. Gaussian kernel and thus cannot
be analysed. Different suitable measurement function which fulfils
the completeness requirement can be used instead. Using these
tools, we can characterise an underlying PSF from the given
blurred image.

We performed the PSF characterisation using for PSFs in [2].
Although these PSFs are not complete with respect to measurement
function, yet PSF generated using proposed theoretical framework
results in PSF estimates with one-to-one correspondence. These
results are given in [60]. We also used these PSF estimates as
initial estimates in [29] for blind deconvolution purpose on [2]
database as given in Table 2. 

We observe from the table that the proposed method produces
deconvolved output of comparable quality to that of state-of-the-art
methods with much less time complexity. Thus, we conclude that
the BPLC can be used for PSF characterisation and analysis even
when no prior information is available.

Fig. 15  Gradient profile along principal directions of blur kernel
(a) Disk blur kernel, (b) Gaussian blur kernel, (c) Square blur kernel, (d) Motion blur
kernel

 
Table 2 Blind deconvolution metric
Method Proposed Sun et al. [29] Dark channel [61]
SSIM 0.8802 0.9211 0.8947
PSNR 28.63 30.27 27.92
time, s 39.97 860.87 267

 

IET Image Process., 2020, Vol. 14 Iss. 2, pp. 297-309
© The Institution of Engineering and Technology 2019

307



6 Conclusion
In this paper, we present a novel concept of blur point locus curve
to represent, analyse and characterise the underlying PSF. We also
present a classification of the PSFs that allows us to compute the
blur amount in any orientation efficiently. We also introduce notion
of completeness and measurement function which allows to
perform PSF related analysis in alternate domain (Measurement
function domain). These tools can be used in various applications
such as characterisation of an optical system, PSF decomposition
and generation, blind deconvolution, image tampering detection
etc.
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