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Abstract—Images with visual and scene text content are ubiq-
uitous in everyday life. However, current image interpretation
systems are mostly limited to using only the visual features,
neglecting to leverage the scene text content. In this paper, we
propose to jointly use scene text and visual channels for robust
semantic interpretation of images. We do not only extract and en-
code visual and scene text cues, but also model their interplay to
generate a contextual joint embedding with richer semantics. The
contextual embedding thus generated is applied to retrieval and
classification tasks on multimedia images, with scene text content,
to demonstrate its effectiveness. In the retrieval framework, we
augment our learned text-visual semantic representation with
scene text cues, to mitigate vocabulary misses that may have
occurred during the semantic embedding. To deal with irrelevant
or erroneous recognition of scene text, we also apply query-based
attention to our text channel. We show how the multi-channel
approach, involving visual semantics and scene text, improves
upon state of the art.

I. INTRODUCTION

Images are the prevalent choice of expression these days,

as they are often more engaging and less intrusive than other

media. Often images use embedded scene text, in addition

to visual elements, to express ideas more lucidly. Such im-

ages with visual and embedded scene text are ubiquitous in

everyday life, in the form of printed advertisements, posters,

propaganda bills, storefront views, and similar variants. The

scene text content in such images is often crucial in the

interpretation of the image. More importantly the scene text

along with the visual contents often provide useful context to

understand these media.

Text detection and recognition frameworks have matured

in recent times, providing appealing results [17], [25] while

handling real life scenarios like complex backgrounds [24],

[18], irregular font sizes or arbitrarily oriented text [25]. With

these advances, the underlying scene text in images, which has

been inaccessible until now in most image understanding tasks,

can now be leveraged to interpret images in a more generalized

way. However, the use of scene text in image understanding

thus far, has been scarce and constrained, basically to the realm

of fine-grained classification tasks [4], [21], [20], [22] and

more recently to Visual Question Answering (VQA) [30], [6].

However, these works treat visual and text features as separate

channels and do not model the semantic relationships between

them.

(a)

Using:  Object + Symbolism + scene text

laptops

I should buy a Lenovo

they make rugged

Because

(b)
Fig. 1: (a) Complementary nature of text and visual cues:

In some cases the visuals can be symbolic, but embedded

text gives away the context[top-left, top-right], in other cases

the visuals can be simple to understand but the text can

be obtuse[bottom-left]. Further, the amount of text content

can vary widely [top-right, bottom-right] (b) Basic idea: Use

detected visual symbolism and objects, together with scene

text to reason about images

In this work, we go beyond the detection of text and visual

objects by learning a joint contextual semantic embedding that

aims at capturing the inter-object dynamics. This interaction

is modelled using a Text-Visual graph and a Graph Attention

network [32] to generate the final embedding. The inter-object

relationships, along with the encoded features, augments the

ability to reason about images. In order to show how the

contextual semantic embedding can be adapted to different

scenarios we apply the model in two datasets where context

plays a critical role: advertisement images[16] and tweets[13].

We address two different tasks on the Ad dataset[16] (retrieval

of relevant statements and topic classification), as well as a

binary sentiment classification task (hate speech detection) on

the tweet dataset[13]. Both datasets contain images where

text, as well as visual elements, are purposefully used to

propagate an agenda, a marketing strategy, or a hateful mes-

sage as illustrated in Fig.1a. They may also contain socio-

cultural references, symbolism[33], [16] along with wit and

humor. Reasoning about such images involves understanding

the context and the relationship between all the elements in

that context[34].

In summary, the main contributions of this work are the

following: first, we model the interplay between the detected

text and the visual cues to generate a contextual embedding
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that encodes the inter-object dynamics using an attentional

relationship graph. Second, we show through experiments that

this model can be applied successfully, improving state of the

art, to different image understanding tasks, such as semantic

retrieval of relevant statements, topic classification or senti-

ment classification. Third, we make additional contributions

to better leverage the use of scene text for the specific task of

retrieving relevant statements in the ad dataset: we propose a

novel use of scene text by using both semantic and lexical

information and we leverage the language structure of the

statement by partitioning it into an action-reason pair to better

model the relation between the semantics of the query and the

image.

II. RELATED WORKS

A. Use of scene text

Using scene text for image understanding has been at-

tempted mainly in the context of fine-grained image classifica-

tion tasks [4], [21], [20], [22]. Leveraging scene text present in

an image may lead to better classification accuracy for certain

types of images, e.g., storefront images [21], [20]. While in

[22], the authors use a spatial encoding of n-grams as text

features, in [20] they argue for word-level features and use a

vocabulary based Bag of Words (BOW) representation. In both

works, the final representation is a combination of visual and

text cues, without using any semantic information or modelling

of the interaction between the text and visual cues. Only in

[4], the authors proposed encoding the text using a semantic

embedding[26] improving upon the previous results.

Recently, motivated for last advances in scene text ex-

traction, there is a surge of interest in systems and datasets

that leverage scene text along with traditional visual cues,

for instance in advertisement understanding[16], hate speech

detection[13] or VQA[30], [6]. In these cases it is observed

that visual features alone are not enough and extracting the

scene text and encoding the context is critical for successful

interpretation. Scene text features have been shown to be quite

discriminative by themselves for advertisement understanding,

as noted by the CVPR AD Workshop Challenge winners. We

will rely on these results and we will also use a separate text

channel encoding scene text semantics for ad retrieval. In the

case of VQA the proposed baselines, built upon traditional

VQA systems, combine the text channels along with the

standard visual channel, but without trying to model the

relationship between them. In our work, we will show that

modeling such relationships generates rich contextual features

leading to improved semantics.

B. Text and vision

Language and vision are the two most important ways we

communicate. Thus, their combination poses important chal-

lenges like image captioning [3], text-based image retrieval

(e.g., google image search) and Visual Question Answering

[12] among others. In most cases, the semantic encoding of

the text, is used either in conjunction with visual features

through fusion[12], [5] for VQA tasks, or it is used to define

a common subspace[10] to project the visual representation

into for retrieval tasks. In [33], an embedding scheme projects

images and statements into a common subspace, where re-

trieval is feasible. The embedding scheme used features from

salient regions proposed by symbol detectors and automated

captions generated by Densecap[19]. The generated caption

acted as external knowledge and was encoded with word-

embedding[26]. The success of such methods[33], [11] in

embedding visual features into a common semantic subspace

can be largely attributed to the discriminative nature of text

semantics[26], [29] facilitated by availability of huge text

corpus.

In these works, the text originates from an external source

(question, caption, annotation) and not in the form of scene

text present within the image. While images may usually con-

tain visual objects, symbolism, and motifs the advertisement

and tweet images that we analyse in this work often use

scene text content to drive home a clear message. Thus, while

we find several related work exploring the visual symbolism

present[33], [9], or attending[1] to different visual compo-

nents, we also explore the role of scene text in conveying

that take away message.

C. Contextual Encoding

Given the nature of high-level tasks like VQA or caption-

ing, both textual and visual cues convey essential contextual

information to be leveraged. While feature fusion[12], [5] is a

standard scheme for image representation encoding different

modalities, it is preceded by feature aggregation of respective

modalities. However, simple aggregation of local features from

different modalities leads to loss of fine-grained spatial and

contextual information that can be beneficial for high-level

downstream tasks. Here is where attention[27], or relevance

of the different detected components, comes into play. In

the case of advertisement images, for instance, the need to

attend to relevant information has found expression in various

works[1], [33], [9]. In these works we see examples of top-

down attention, guided by the final task[33] or linguistic cues,

in the form of the text statement [9], to attend to the visual

features corresponding to symbolism and objects. Recently,

attention on graphs describing the relations among different

components has been proposed with the Graph Attentional

Layer (GAT)[32], [31], [23] to encode the context. We will

leverage GAT in our contextual encoder as a way to explore

the interplay between the detected textual and visual local

features, and encode their contextual information, to generate

rich semantics.

III. METHOD

Fig.2 gives a detailed illustration of our proposed model,

which extracts and encodes visual and scene text cues to

generate a contextual encoding, applicable to different tasks,

viz semantic embedding, classification. The basic stages of our

pipeline consist of a Visual Encoder, a Scene Text Encoder,

and a Multi-Modal Contextual encoder.
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Fig. 2: Model architecture of the Proposed Contextual Embedding applied to the separate tasks of semantic embedding and

classification

A. Visual Encoder

Images often consists of multiple visual elements providing

different semantic information. Thus we argue that local region

patches are better suited[20] to this task than global image-

level features. We use two different channels to generate

meaningful local patches. We use a pre-trained standard object

detector[15], to detect salient objects in the image, which can

convey relevant semantic information. Recently it has been

shown that symbolism associated with the local visual patches

in the image (for instance, concepts like danger, cool, freedom)

can play a significant role in semantic understanding [33].

Thus, we also leverage symbol annotations in the dataset[16]

and use a pre-trained [33] symbolism detector to generate

an additional set of local region patches. A pre-trained deep

network [14] is used to extract visual features vi ∈ R300,

corresponding to both detected object and symbolism local

patches.

B. Scene Text Encoder

While scene text (present in the image) may be a rich

source of information for semantic understanding of the image,

extracting that text involves dealing with complexities like

cluttered background, orientation, or uneven lighting. Consid-

ering that the accuracy of text extraction is a critical factor

for later image reasoning, we have analyzed different OCR

alternatives[24], [18] to evaluate their impact on the final

system. Finally, we settled on using Google Vision API, as it

leads to improved text extraction, generating legible scene text

for about 94% images. The extracted text is embedded [26]

into a word embedding space that encodes the semantics of

the text.

a) Anchor based Text Attention: The number of recog-

nized scene text words varies widely and besides, not all of

the words are relevant to the given task. Therefore, we propose

to encode the detected words in terms of a fixed number of

anchors (or clusters) specific for every task. In the case of

the tasks in the Ad dataset, the anchors are the 15 statements

associated with each image (see section IV-A for details). For

the Tweet dataset, we use the same from hatebase.org, as used

for dataset collection[13].

Thus given n recognized scene text words [t
′

1..t
′

n], we

encode them as [t1..tk], in terms of the k task dependent

anchors Ak:

tk =

n∑

i=0

ri,kt
′

i, where ri,k =
∑

j

1

1 + d(t
′

i, Ak,j)
(1)

ri,k gives the similarity between a scene text word t
′

i and

anchor Ak, based on distance measure d. When an anchor

has multiple words (statements in the ad dataset), ri,k is the

sum of similarities with all anchor words Ak,j . Thus, given a

variable number of detected words, only those that are similar

to the anchors are considered relevant.

C. Contextual VT (Visual Text) Encoder

One of our main contributions is a representation that cap-

tures the rich interplay between the text and visual cues. Such

a representation entails a) defining a compositional strategy

encoding the contextual relationships among the co-occurring

text and visual features, and b) capturing their interaction.
a) Compositional Strategy: Text Visual Graph: In the

case of text semantics, the strategy employed to encode context

is usually sequential [26] characterized by a sliding window.

Our recognized text and visual objects do not have any

particular sequence ordering, and thus we take inspiration from

the recently proposed graph-structured context[31].

The top 10 visual objects vj detected by the visual encoder

and the k task dependent text anchors tk provided by the

scene text encoder are represented as nodes to construct a fully

connected graph G = (V,E), with V = v ∪ t. However, the

text and visual nodes have features from different domains and

are not directly comparable. Thus, we augment visual nodes

with the mean of their adjacent text nodes, and similarly for

text nodes we augment them with the mean of their adjacent

visual nodes:

xi = vi||t̄ or xi = v̄||ti (2)

We assume the graph is fully connected based on our earlier

hypothesis of relatedness between all objects in the image



1. I should buy a Ford Because many families have one
2. I should drive a ford Because it is made for every style
3. I should watch out for bad drivers Because they could be tourists
4. I should be driving a Hyundai Because the car makes me want to 

drive
5. I should drive this car Because single woman should also have fun

1. I should buy a Ford Because many families have one
2. I should drive a ford Because it is made for every style
3. I should watch out for bad drivers Because they could be tourists
4. I should be driving a Hyundai Because the car makes me want to drive
5. I should drive this car Because single woman should also have fun

I should <action, object> Because <reason>
Fig. 3: A sample Ad image, with relevant sentences in blue

and irrelevant sentences red. The task is to rank the relevant

sentences ahead of the irrelevant ones, given an example Ad

image. Showing only 5 of 15 statements for brevity

(text and visual). The edge weights representing the relevance

between two nodes are implicitly learned through the Graph

Attention Layer.

b) Interaction scheme: Relation Encoder: We model the

text-visual interplay in our relationship encoder by allow-

ing attentional interaction amongst the nodes of the graph

through a Graph Attention Layer [32]. We allow nodes in

a similar context, in this case an image, to influence each

other’s representation. Our interaction scheme is similar to the

Implicit Relational Encoder proposed in [23], but we differ

in our design of the attention mechanism and also allow for

multimodal text-visual interaction. Given the input features

xi of a node, we learn a shared projection matrix W , and

perform self-attention on the adjacent nodes to generate the

output feature hi for that node

hi =
∑

j

αij .Wxi with αij = softmax(ei,j) (3)

where αij is the attention weight defined using ei,j represent-

ing the importance of node j to node i. It is computed by a

single layer feed forward network akin to [32]. We define the

final aggregated contextual feature as h̄, the mean of all the

nodes.

IV. APPLICATION OF THE MODEL

A. Task 1: Image-Statement Relevance

For this task we will use the Ad image dataset introduced in

[16]. In a later work [33], a retrieval task was proposed, where

the goal is to match an Ad image against relevant sentences.

For each image 3 relevant and 12 non-relevant sentences are

provided. See Fig.3 for an example of this task.

Learning of the contextual semantic embedding: The

Image-Statement Relevance task entails matching statements

against images. Thus, we need the image and statement repre-

sentations to be comparable by a distance. As explained in sec-

tion III-C, images are are represented by the aggregate of their

contextual embedding given by h̄. Statements are encoded as

the aggregate of their word2vec word embeddings. To make

them comparable we project the aggregated contextual vector

h̄ into a semantic space z, where matching against relevant

statements is feasible, as depicted in Fig.2. The weights W s

of the projection matrix are learned through triplet training

‘ford’, ‘garage’, 
‘families’ , ‘two’ , ‘for’ 
..

I should buy a Ford Because many  
families have one

test

Reason embedding

train

They make rugged laptops

sportsmen use them 

�� = ����

I should buy a Lenovo 

I should buy Nike shoes

�� = ���� Action embedding

����
�

�� Image to reason visual semantic 

Text to syntactic similarity
to  nearest  statement

Text to word2vec semantics

Image to action visual semantic 

‘Tools’, ‘make’, 
‘Lenovo’, ‘desktop’,
‘laptop’, ‘tablet’

Fig. 4: Sentence Relevance Task: Training, Testing

with relevant and irrelevant statements, minimizing this triplet

loss

l(z, s, θ) =

B∑

i=1

∑

j∈ns(i)

‖zi − si‖ − ‖zi − sj‖+ β (4)

where B is the batch size, β is the margin of triplet loss

and z is the semantic embedding, with si and sj being the

randomly sampled positive and negative statement semantic

features respectively. Given the ith image, ns(i) denotes the

set of irrelevant statement sj is sampled from.

Retrieval framework: We build upon the semantic contex-

tual embedding learnes as explained in the previous section

to define the complete framework for the Image-Statement

Relevance task shown in Fig.4. We integrate some specific

model components that leverage certain properties of the

advertisement images to boost performance in this task. More

specifically, in training we learn separate semantics based

on statement action-reason partitioning. During testing, we

integrate additional text channels component to mitigate vo-

cabulary misses.

a) Partitioning: Analogous to some recent works [7], [2]

that combine natural language and vision we take advantage

of the linguistic structure of the statements. The statements in

this task can be partitioned into a couplet of action and reason

: “I should < action > because < reason >.” e.g., “I should

buy a Lenovo because they are rugged laptops”, as can be

seen in Fig. 1b. We exploit this structure and learn, using the

triplet loss defined in eq.4, two separate semantic embeddings,

viz one related to actions za, and another one to reasons

zr. Thus, given an image, we now evaluate its relevance

separately for the action and the reason. Such partitioning

allows not just exploiting fine-grained intermediate data, but

it also enables to mitigate long term dependencies associated

with long sentences [28].

b) Scene Text Semantic Channel: During test time, while

matching images against statements, we augment the trained

contextual semantic embedding with an independent scene text

semantics channel. This text semantics uses the same anchor

based encoding of the scene text as described in eq. 1, but in

this case we only use the query statement as a single anchor.



c) Lexical similarity scoring: Often brand names, or

brand-related terms, like ‘googling, Mcchicken’, are not

present in the pretrained word2vec vocabulary used for text

semantics. This can be further aggravated by erroneous word

recognition. In particular, for the Ad dataset, a total of 15%
of the 3 million recognized words could not be mapped to

any semantic vector. One way to cope with vocabulary misses

in word embedding is to use Lexical Similarity. It provides

us a way to check for the similarity between the raw scene

text and the query statement without the need for any further

embedding. This enables us to use all the extracted scene

text words, taking advantage of any word correspondence. We

measure the lexical distance d(sj
r, tr), as the cosine distance

between tf-idf vectors of the raw scene text words ti
r and the

query statement words sjk
r.

d) Final matching: Combining contextual semantics with

text scoring: The final distance measure used for the ranking

of the query statement tries to capture the semantic distance

between the statement sj and the image taking into account the

contextual semantic features z (with action-reason partitioning

za and zr), the semantic text features t, and the lexical distance

from the scene text features tr. It is given by:
arg
j∈Q

min d(za, sja) + d(zr, sjr ) + d(t, sj) + d(tr, sj
r) (5)

where we have Q query statements to rank against an image.

B. Task 2: Classification

We also apply the contextual semantic embedding to two

different classification tasks: topic classification on the Ad

Image dataset[16] and tweet classification on the MMHS150K

dataset[13]. While the Topic classification[16] task consists of

categorizing the Ad image under one of 38 different product

heads viz, ‘car’,‘beauty’,‘coffee’, the tweet classification in-

volves marking tweets as hateful or benign. In both cases the

classifier is built upon the contextual encoding framework as

depicted in Fig.2. In particular, the contextual representation is

fed to a softmax classifier and trained end-to-end with cross-

entropy loss.

V. EXPERIMENTAL RESULTS

A. Task1: Image-Statement Relevance

For the Image-Statement Relevance task we follow the

protocol introduced in the CVPR Workshop 1, and rank

15 statements (3 relevant, 12 non relevant) based on their

relevance or similarity to the image.
a) Metrics: We compute 3 different metrics: 1) Accu-

racy, which records a hit whenever any of the 3 relevant

statements is picked 2) Rank Average, which is the average

rank of the highest-ranked relevant statement and 3) Recall at

3, which denotes the number of correct statements ranked in

top 3. For a good model, we expect high accuracy and recall,

with a low average rank.
1) Comparison with the state-of-the-art: In this section,

we compare our results with the current state of the art.

We first give a brief description of the methods used for

comparison. VSE++ [10] is one of the major visual semantic

1https://people.cs.pitt.edu/ kovashka/ads workshop/

embedding schemes, but it does not incorporate the symbolism

or scene text content present in the Ad image. ADVISE [33]

played the crucial role of leveraging the symbol annotation[16]

present in the dataset, and use the symbol channel in the

visual semantic embedding. While these schemes do use

external knowledge, in the form of automatically generated

captions[19], to augment their visual understanding, we are

the first ones to formally introduce scene text in the context

of visual understanding. Both VSE++ [10] and ADVISE [33]

had also participated in the CVPR 2018 Workshop Challenge,

organised on this dataset. In the results we can clearly see

the improvement brought upon by our complete framework

using contextual semantics trained on visual and text features,

augmented with text scoring and statement partitioning.

TABLE I: Comparison with state-of the-art. Results marked

with * do not use the exactly our same partitions for training

and test.

Model RankAvg ↓ Accuracy ↑

VSE++ [10] 3.85 66.6 *
ADVISE [33] 3.55 72.84 *
CVPRW winner - 82 *
Our full system 3.09 90.9

2) Ablation Study:

a) Training of Semantic Contextual Embedding: In Tab.II

we analyze the contribution of the different channels and

components involved in training the semantic contextual em-

bedding. Visual and text baselines are proposed to show

the contribution of each individual channel in the contextual

embedding (columns 1 and 2 in Tab.II). The visual baseline

only uses the ResNet visual features and excludes the use of

scene text or GAT in the pipeline. For the text baseline, only

the scene text word embeddings are used. In both cases, the

local features are aggregated to generate a semantic vector

trained with triplet loss. In columns 3 and 4 textual and visual

features are fused with simple concatenation while the full

model using the contextual VT encoder is shown in column

5.
b) Contribution of the different channels: For the sen-

tence relevance task, as eq.5 shows, the ranking involves, not

just the visual semantic features, but also semantic and lexical

text features. In Tab.III, we detail the contribution of each of

these separate channels. We also show the improvement due to

using statement based attention when aggregating scene text

features.

TABLE II: Semantic Embedding : Role of Text and Visual

channels, partitioning and Contextual VT encoder in semantic

embedding

Visual X × X X X

Text × X X X X

Partitioning × × × X X

Contextual VT Encoder × × × × X

Accuracy ↑ 55.6 74.4 82.4 83.5 85.7
RankAvg ↓ 4.77 4.31 3.34 3.29 3.2
Recall@3 ↑ 1.4 1.7 2.12 2.14 2.19



TABLE III: Sentence Relevance: Role of components Seman-

tic and Text channel in Sentence Relevance task

Text Semantic × X × ×

Text Semantic w/ attention × × X X

Lexical × × × X

Semantic Embedding X × × X

Accuracy ↑ 85.76 72 74.4 90.9
RankAvg ↓ 3.2 4.52 4.31 3.08
Recall@3 ↑ 2.19 1.6 1.7 2.3

Fig. 5: Semantic Retrieval. The semantic features of the query

image, bounded in red, is used to find its top 3 matches among

the other test images. The Top row lists images, that were

retrieved using Visual cues based semantic feature. The bottom

row uses our contextual encoder for semantic features, using

both scene text and visual cues. Our improvements leads to

retrieval of images not just pertaining to cars, but also gets the

type and brand right.

3) Qualitative Results: Fig.5 shows examples of query

by image, i.e. the semantic features of an image are used

to find similar images. We show that the proposed scheme

can encode the visual and text cues, and generate a holistic

semantic feature. Comparison with the baseline that uses

only visual features shows the effectiveness of scene text in

generating more fine-grained results.

In Fig.7a, we display instances where the visual features by

themselves were not able to map the image to the correct state-

ments, and we had to incorporate scene text in the semantic

representation. This can be attributed to the co-occurrence of

certain semantically related words in both the scene text and

the relevant statements. However, the simple co-occurrence of

semantically related words does not suffice for all examples,

as is illustrated in Figs.7b and 7c. In particular, in Fig.7c, we

show test instances that were only correctly mapped to their

statements when we incorporated the relationship encoder,

going beyond simple visual or text similarity and exploiting

non-literal relationships. For example, in the second example,

it had to relate that getting the service amounted to bridging

the challenge between being anxious and excited.

B. Task2: Classification

a) Topic Classification: In the Topic classification task

the objective is to classify an Ad image into 1 of 38 Topic

Ad dataset MMHS150K

nigga you the one drinkin
the overpriced flint water 
but aight

This nigga has asked me 
if I'm working from home 

every day this week

I have a conservative 
victim card; it will protect 

her from tofu.

Maga redneck 
holloween costumes

I know this aint the 
nigga talkin to me bout 
violence in the streets

you fucking nigger you have 
decided my faith. i am now 
commit suicide fagget

Fig. 6: Qualitative Results on Classification task. Correct class

labels are marked in green, and incorrect ones are marked with

red

TABLE IV: Classification results

Ads Dataset MMHS150K

Dey et al[8] 58
Hussain et al [16] 64.34 SCM[13] 68.5
pretrained on Task1 66.35 TKM[13] 68.2
Our Model trained 69.23 Our Model trained 67.44

classes. Topic classification was initially attempted by [16] by

training 152-layer ResNet using the visual features only. In

Tab.IV row 1, we see another scheme[8] which uses both text

and visual features, but uses simple concatenation to aggregate

them. Thus, we stress that simple use of text is not enough;

we have to find ways to capture the multimodal interaction, as

in our contextual encoding. In row 3, we observe that using

features from the network trained on the sentence relevance

task, we can already improve upon the previous results. In row

4, we present the results of our final end to end trained topic

classifier.

b) Tweet Classification: In the recently proposed Hate

Speech dataset MMHS150K[13], the binary classification task

of marking tweets, containing both visual and text content, as

”hateful” and ”benign” was proposed. We address the class

imbalance problem in the original dataset by training on equal

number of random samples from each class. Application of

our contextual encoder, leads to results comparable with the

multimodal models proposed by the authors

VI. CONCLUSION
We proposed a framework for interpreting images by lever-

aging both visual and text contents present in the images.

Visual cues, both symbols and objects, together with scene

text are extracted and embedded in a semantic space trained

with triplet loss. Our embedding also incorporates text-visual



I should order a Big 
Mac because it is 
delicious.

I should eat at Boston Market 
because they offer specials: for  
example, in honour of tax day 
they are offering a buy one, get 
one free plate.

I should buy this  because 
it has free shipping and 
looks good.

I should drink this product, 
because it is as refreshing and 
zestful as leaping into a crystal 
clear pond of water

I should buy an  Audi 
because it has superior 
break-through 
engineering

I should buy this item 
because it is high quality at a 
good price.

I should get this service for 
peace of mind

(a) (b) (c)

Fig. 7: (a) Examples where just visual features were not enough to generate robust semantics, and only with the incorporating

of Scene Text content in Semantic Embedding were we able to map the images to their relevant statements. (b)Examples where

semantic features with visual and text, still fell short of retrieving the correct relevant statements and Partitioning had to help.

(c)Examples that required exploiting Non-Literal relationships using our visual text relationship encoder.

inter-object dynamics encoding, which leads to capturing non-

literal relationships between the detected objects. This idea of

extracting and encoding, followed by embedding in semantic

space, finds application in semantic retrieval and classification

tasks.

In addition, we leverage the linguistic structure, training sep-

arate branches of the network for action-reason parts of the

statement. We augment the visual-text semantic representation

of the image with the lexical similarity between scene text and

the query statement. Results confirm our initial hypothesis that

scene text plays an important role in semantic understanding

of images. These results encourage us to extend the application

of our framework to more generic domains, for instance, the

recently released datasets[30], [6] for VQA using scene texts.
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