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Abstract. Chemiluminescence is one of the most commonly used optical diagnostic techniques in combustion

research where a line-of-sight projected information is generated from spatial fields. The exactness and

uniqueness of reconstruction along with ease of implementation gives Abel inversion an edge over the other

existing single-view reconstruction techniques for efficient estimation of spatial field from line-of-sight pro-

jections. Though there exist many such algorithms, the primary focus of these has been to ensure tractable in-

version through a systematic regularization by imposing a smoothness constraint on discrete data points. But

these techniques do not have the provision to process the input image prior to deconvolution in order to prevent

accumulation of noise infiltrated during data acquisition. Another major limitation of these algorithms is to adopt

the changes in characteristics of the input data points while maintaining optimal storage and time complexity. To

address these issues, we have proposed a new image processing technique using standard Abel inversion for the

application in combustion research. It provides a suitable model to ensure regularized inversion by imposing a

smoothness constraint on acquired raw data. The new algorithm has been implemented to yield the physically

significant chemiluminescence emission from hydroxyl radicals in flames from line-of-sight integrated images.

The effectiveness of this algorithm is highlighted using exemplary OH chemiluminescence images captured

from a standard swirl stabilized research burner.

Keywords. Abel deconvolution; image enhancement; mixture of Gaussian; swirl combustion; optical

diagnostics; chemiluminescence.

1. Introduction

In this study, we develop an image processing algorithm

using Abel inversion for application in combustion

research, especially in 2D analysis of chemiluminescence

images from flames. The chemical reactions in flames

generate energy and the electronic excitation of molecules

takes place. The excited molecules undergo deactivation to

lower energy levels by the emission of photon, and the

process is termed as chemiluminescence. The primary

source of chemiluminescence in hydrocarbon flames con-

stitute the radiative emissions from electronically excited

species that are formed chemically, such as CH*, OH*, C2*

and CO2* [1]. Under fuel lean conditions chemilumines-

cence can, therefore, be taken as an indicator of the reacting

conditions in the flame since these species are mainly

produced in the reaction zone [2] [3]. Of these, the emis-

sions in the UV range stem predominantly from OH

(hydroxyl radical) in an electronically excited state (termed

OH*). In combustion research OH* is, therefore, one of the

most commonly used radicals to identify the spatial

dimensions of the flame and the heat release behavior. OH*

has a very short lifetime i.e. on the order of a few

nanoseconds. From investigations in flames with gaseous

fuels, there are indications that the intensity of the OH*

chemiluminescence is related to the reaction rate or heat

release rate. So by capturing the OH* chemiluminescence

emissions from the flame (using an intensified CCD cam-

era), information can be obtained about the instantaneous

size and shape of heat release zone. Since the measurement

technique is line of sight, with the OH* emissions collected

along the line of sight, the spatial resolution is compro-

mised. However, in case of flames from axisymmetric

burners, Abel deconvolution can be used to reconstruct the

underlying 2D scalar fields or radial distributions. The 2D

information so obtained are also vital for the modeling,

validation and optimization of numerical simulation codes.
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Various Abel deconvolution algorithms have been

developed over the years with diverse applications such as

heat conduction, infrared tomography and many more

[4–9]. But most of these algorithms focus primarily on

developing a strategy to enhance degree of smoothness with

minimal consideration given to pre-processing the acquired

raw results. In this paper, we propose to implement Abel

deconvolution under noisy environment by taking utmost

care while acquiring the results (raw images), modeling the

noise and implementing a Mixture Of Gaussian (MOG)

model to ensure higher degree of smoothness. An extensive

investigation has been conducted in deciding the suit-

able curve that is preferred over the others while fitting the

discrete data points. Based on this, a new way of imple-

menting Abel deconvolution, which is robust to noisy and

discrete experimental data, has been proposed. The fol-

lowing sections give a brief description about the mathe-

matical aspects and geometrical interpretation (section 2),

related works (section 3), followed by the implementation

of the algorithm (section 4) in a 2D-OH* chemilumines-

cence image acquired from a standard swirl stabilized

burner.

2. A brief review of Abel transform

In this section 2, a very brief discussion about the forward

(2.1) Abel Transform and Abel Deconvolution (2.2) is

given. More details on Abel Transform can be found at

[10].

2.1 Forward Abel transform

The forward Abel transform of a function f(r) is defined by

the following equation as

FðyÞ ¼ 2

Z 1

y

f ðrÞrdðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � y2
p ; ð1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2Þ
p

represents the radial distance of the

points on the line of sight of integration and y represents the

distance of the observer from X axis as shown in figure 1

[10].

2.2 Abel deconvolution

The Abel deconvolution is usually used to obtain the

symmetric function from it’s projection i.e. a scan or a

photograph [10]. Assuming that f(r), f 0ðrÞ (‘0’ represents

first derivative) drops to zeros more quickly than 1
r
, the

inverse Abel transform is given by Eq. (2). The emission

function f(r) can be obtained from its projection F(y) with

the help of this inverse Abel transform.

f ðrÞ ¼ �1

p

Z 1

r

dF

dy

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � r2
p ð2Þ

For the ease of understanding, we have demonstrated the

physical interpretations of Abel transformation with math-

ematical equations in light of circular symmetry. However,

the general equations (1) and (2) of Abel transformation

with certain modifications can be extended to other

instances, such as spherical and cylindrical symmetry,

without the loss of generality.

Of particular interest, the projection of a cylindrical

symmetric function f ðq; zÞ onto a plane parallel to Z axis

can be obtained by taking Abel transform of f ðq; zÞ as

shown in the following equation.

Fðy; zÞ ¼
Z 1

�1
f ðq; zÞdx ¼ 2

Z 1

y

f ðq; zÞqdq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � y2
p ð3Þ

where q
2 ¼ x2 þ y2 is the cylindrical radius and F(y,z) is

the projection on YZ plane. The inverse Abel transform of

such projection can be obtained by the following equation.

f ðq; zÞ ¼ �1

p

Z 1

q

dF

dy

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � q2
p ð4Þ

Since our application provides the projected image F(y, z),

we aim to employ inverse Abel transform, as given in

Eq. (4), to obtain the cylindrical symmetric flame f ðq; zÞ.

3. Related works

Abel transform and its inverse integral equation finds

numerous applications in various branches of science

especially in plasma diagnostics and X-ray radiography,

where it is used to yield information about the density or

temperature distribution [4]. In combustion studies, the

deconvolution algorithms are used for extracting the

tomography of spectroscopic emissions from axisymmetric

objects, for example flames in axisymmetric burners. One

Figure 1. Projection of a transparent, emitting scalar field with

circular symmetry as per the field of view of an observer along the

blue arrows.
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of the most commonly used algorithms in this case is the

onion peeling method [5]. The ill posed sets of equations

generated by the onion-peeling scheme are transformed into

well posed sets with the help of Tikhonov regularization

scheme [6]. A comparative study of Abel three-point

deconvolution, onion-peeling and Tikhonov regularization

is given [8] for a known spatial field from a line-of-sight

integrated projection data.

Other approaches to solving this singular integral equa-

tion obtained from axisymmetric flame and parallel scan-

ning measurements are generalized quadrature method,

spline smoothing and Tikhonov regularization along with

infrared tomography [9].

For an axisymmetric object the measured intensity, in

gray level units, is related to the object’s radial optical

density profile through Abel’s integral equation. So, in

order to extract the physically significant radial density

profile the measured raw data (or image) needs to be Abel

inverted, which can then be used for non-destructive eval-

uation of the object. In other words, the forward Abel

transform is used for the projection of an axially symmetric

function onto a plane, whereas inverse Abel transform is

used for extracting the axially symmetric function from its

projection i.e. a scan or a photograph. Computational issues

arise when the raw data contains noise because the efficacy

of inversion algorithm greatly depends on the suppression

of noise. Since the expression used for inversion is an

integral equation, it is certainly affected by the accumula-

tion of small drifts due to noise. Also, the derivative used in

Abel integral equation tends to amplify the errors. Over the

years, many Abel inversion techniques have been proposed

[9, 11–13]. One of the successful algorithms was proposed

by Deutsch and Beniaminy [11], that uses derivative free

implementation of Abel inversion. One of the key features

incorporated in this derivative free inversion is based on the

least square smoothing of discrete experimental data.

Though the algorithm produces high quality images after

inversion, its time complexity is Oðn1:5Þ and also it requires

high storage space. In spline based representation of the

input data, the implementation of spline fit avoids ampli-

fication of noisy data. But the quality of this fitting proce-

dure deteriorates at the end points of the sampling interval.

Therefore, a plausible solution to address this issue would

be to reflect part of the data relative to y-axis before fitting

the data using a spline fit [13].

The analytic spline Abel inversion (ASAI) is another

successful implementation of Abel deconvolution that has

been proved to be extremely effective under noisy and

noise free environment. Despite the effectiveness of ASAI

algorithm, it requires Oðn2Þ number of arithmetic opera-

tions that includes four transcendental operations per each

set of data and also, its coefficients are uniquely associated

with the data points. Hence these coefficients can’t be

stored in advance. In order to address this issue Gueron and

Deutsch have proposed a fast Abel inversion (FAI)

technique [13] that uses less number of transcendental

operations while using the spline based smoothing proce-

dure. The FAI algorithm computes coefficients which are

independent of the data points and hence, these can be

computed once, and used for many dataset [13]. Though

this independent approach is considered to be significantly

impressive, there is a need to change the coefficients

slightly in order to adapt to the changes in data points.

Therefore, a smoothing scheme which can adapt to the

changes with less number of arithmetic operations, espe-

cially transcendental operations, and a high degree of

smoothness is desirable.

Though the smoothing procedure eliminates the abrupt

transition in intensities, we have observed that noise due to

various sources still persists in the captured images.

Therefore, in this paper, we have experimented various

standard image enhancement schemes to further alleviate

the adverse effects of image acquisition in real world

applications.

4. Proposed methodology

In the proposed algorithm we assume that the line-of-sight

projections of the spatial field are equally spaced over the

whole field and each of these projections are obtained with

the help of a narrow beam. It has been proved that sampling

has a great influence on the quantity of noise which gets

added to the spatial field during the process of deconvolu-

tion [5].

Therefore one of the most important steps in deconvo-

lution is to eliminate oversampling and smooth the pro-

jected discrete data prior to deconvolution. While the

oversampling issue is resolved by taking utmost care during

image acquisition, the Mixture of Gaussian (MOG) model,

as proposed in this paper, has been used to approximate the

discrete noisy experimental data.

In the following sections, we elaborate on the proposed

methodology with detailed experimentation and analysis.

The image acquiring process and image enhancement

(section 4.1) techniques have been discussed prior to esti-

mation of smoothing function (section 4.2) and Abel

inversion (section 4.3). Thereafter, the post-processing task

such as spatial distribution of deconvoluted data points has

been discussed (section 4.4), followed by the essential

algorithms (section 4.5) namely coefficient extraction and

Abel deconvolution.

4.1 Image acquisition and enhancement

Space and time complexities are two of the important

factors in most image processing techniques. Storage and

retrieval without loss of valuable information is nonetheless

challenging task in various scenarios. In order to deal with

such problems, we have taken utmost care during data
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acquisition. The OH* emission images from a standard

swirl burner, as used in this work, is captured using an

intensified CCD camera. The raw images are recorded in

.im7 format (type: graphic) which is a proprietary file for-

mat from LaVision GmbH. For the post processing of the

images the .im7 images are exported into .jpeg format.

After storing the data, the next vital step is to remove noise

using image enhancement techniques as a regularization

strategy to make Abel inversion more tractable.

In real world applications, it is almost intractable to

acquire images without noise. In image processing per-

spective, it can be justified by central limit theorem that

these unwanted signals, often referred to as noise, tend to

follow Gaussian distribution when several random numbers

are added [14]. Thus, the unavoidable noise, since it affects

all the pixels of the captured image, is reasonable to be

modelled as Additive White Gaussian Noise (AWGN).

Hence, an edge preserved smoothing mechanism will be a

great option to eliminate the AWGN without corrupting the

data. However, it is extremely difficult to compute the

latent variables of such distribution and eliminate the noise

completely. Therefore, one of the plausible solutions to

tackle such an issue is to employ various image enhance-

ment techniques on the raw pixels and analyze the impact

of such methods qualitatively. Since neither the noise-free

image nor the actual noise distribution is at hand, we have

preferred qualitative analysis over quantitative measures

such as SNR. In order to validate our assumption of

AWGN, we have experimented with variance and loga-

rithmic transform based enhancement techniques. After

exploring these methods, we have observed that edge

adaptive smoothing using Gaussian kernels turns out to be

more effective when compared with other image enhance-

ment algorithms such as unsharp masking and retinex.

Therefore, this comparison validates the additive property

of the noise in our raw data up to some extent. One can find

a detailed description with notable comparisons among

these image enhancement techniques in [14]. The qualita-

tive analysis of the aforementioned techniques is shown in

figure 2. As figure 2(b) depicts, the edge preserved

smoothing using Gaussian kernel outperforms the rest

mechanisms, and hence, it has opted for further processing.

In the following few paragraphs, we briefly discuss some

key enhancement techniques that we have experimented in

this study.

In edge preserved Gaussian smoothing, a small window

Waround a pixel is taken. The variance of all the possible

windows w of the same dimension in the local neighbour-

hood that consists of at least one pixel from the window

W is computed. Then the central pixel of W is replaced with

a smoothed value of the window w that has minimum

variance. For a 5x5 window W, there are 25 possible local

windows out of which 1 window w has a minimum variance

which is used for computing the value of the center pixel

[14].

In local unsharp masking a local window whereas in

global unsharp masking a global window is considered

while computing a low pass filtered image. The low pass

filtered version of the image is then subtracted from itself

and multiplied by an amplification factor. The difference is

amplified only when it exceeds a certain threshold which is

used to suppress small high frequency fluctuations due to

noise. Thus, the amplification factor is chosen according to

the local variance. This transformation can be achieved

using the following equation [14].

Fðy; zÞ ¼ A½Fðy; zÞ � mðy; zÞ� þ mðy; zÞ ð5Þ

where A ¼ kM
rðy;zÞ, k is scalar, M is the average grey value of

the whole image, rðy; zÞ variance of the local window,

m(y, z) is the low pass version of F(y, z) and F(y, z) is the

line-of-sight integrated image with y and z representing

columns and rows respectively.

Figure 2. Qualitative analysis of various image enhancement

techniques. (a) Noisy discrete experimental data. (b) Edge pre-

served Gaussian smoothing. (c) Unsharp masking using adaptive

Gaussian window. (d) Retinex algorithm with 10 iteration.

(e) Unsharp masking using global window. (f) Image sharpening.
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The results are compared with single scale retinex or

logarithmic transform which is usually used to isolate

unwanted signals due to variable illumination that may

manifest during image acquisition. It has two basic

ingredients:

1. grey value normalization by dividing local mean value;

2. conversion into a logarithmic scale which will enhance

dark pixels more and bright pixels less.

This transformation can be achieved by using the following

equation.

Fðy; zÞ ¼ lnðFðy; zÞ þ 1Þ � lnðFðy; zÞÞ ð6Þ

where Fðy; zÞ is the local mean value of F(y, z). The mean

value is obtained using a large Gaussian filter. A deep

insight into all these image enhancement techniques can be

found in [14]. Here, we essentially employ AWGN filter to

enhance the required details of the captured image due to its

close approximation to eliminate noise to some degree.

4.2 Function estimation

After removing the unwanted signals from the acquired

image, the discrete data points are approximated by a

continuous function. Here, we discuss various approxi-

mating functions and their corresponding goodness of fit

(GOF). In order to select the right fit for the discrete

experimental data, we have experimented various functions

including polynomial, Gaussian, Fourier, smoothing spline,

the sum of sine, exponential, power, rational, and Weibull.

Based on their performance and required criteria, the fea-

sible functions have been narrowed down to the top three

approximators which are mixture of Gaussian (MOG),

Fourier series expansion, and higher order polynomial.

Also, we have observed that there is an insignificant change

in the accuracy of approximation as the order becomes

higher and higher. However, the computational cost grows

significantly as the order increases. So, the order of the

approximating function (here, 8) has been decided such that

it provides an optimal residual sum of errors with minimal

computational complexity.

In our notation, F(y, z) represents the intensity at (y, z)

location of input image in spatial domain. We aim to

approximate each row (z) of F(y, z) with appropriate con-

tinuous functions and perform Abel inversion to obtain ele-

ments of f ðq; zÞ in that particular row. The proposed mixture

of Gaussian distributions, which is used to approximate

discrete F(y, z), is given by the following equation.

Fðy; zÞ ¼
X

8

n¼1

an exp
� y�bn

cn
ð Þ2

� �

; 8z ð7Þ

where an is the maximum amplitude, bn is the mean posi-

tion and cn is
ffiffiffi

2
p

times standard deviation(r). Similarly, the

Fourier series approximation is given by the following

equation.

Fðy; zÞ ¼ a0 þ
X

8

n¼1

ðan cosðnxÞ þ bn sinðnxÞÞ; 8z ð8Þ

where x is the fundamental frequency, an and bn are the

coefficients of cosines and sines of nth harmonic respec-

tively, a0 is the offset value. The polynomial model is given

by the following equation.

Fðy; zÞ ¼
X

8

n¼1

ðanynÞ; 8z ð9Þ

where an represents the coefficients of the polynomial

interpolation. Here, the coefficients used in these models

are within 95% confidence bounds [15–17]. A line-of-sight

integrated image is shown in figure 3. Polynomial, Gaus-

sian, and Fourier approximation for a fixed row(here, 368

from top) of the line-of-sight integrated image is illustrated

in figure 4. As described above, a proper goodness of fit

decides the accuracy of the spatial field. Therefore, the

Gaussian mixture model has been selected for further pro-

cessing, as it is found to outperform the rest with minimal

error, high goodness of fit and 95% confidence bound in the

region of interest i.e. from column 100 to 200. For better

understanding, we have visualized the individual Gaussian

distributions along with MOG model in figure 5.

A comparative study of GOF of top performing function

approximators has been detailed in Table 1. We have used

Regression Squared(R-squared), Adjusted R-squar-

ed(AdjR-squared) and Root Mean Squared Error(RMSE) as

the essential statistical measures for assessing the quality of

fit. The details of these metric can found at [18].

The graphical interpretation (figure 4), as well as quan-

titative measure (Table 1) clearly indicates that the mixture

of Gaussian model has exceedingly high goodness of fit in

the region of interest. Outside this region there are dark

Figure 3. An example of a line-of-sight integrated image.
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patches of background information which is not of much

importance in such applications. The underlying hypothesis

of function approximation is that an unknown distribution

can be well approximated by mixture of Gaussian when

sufficiently large number of Gaussian basis functions are

considered. This hypothesis is supported by the central

limit theorem and is well investigated in many signal pro-

cessing applications including image enhancement and

interpolation [14]. On the other hand, the polynomial and

Fourier series approximation does not fit the data as effi-

ciently as MOG with limited number of free parameters.

Therefore, we have opted the MOG model for estimating

the continuous approximation of discrete data. The

parameters of MOG model i.e. an; bn and cn are computed

by optimizing the squared sum of errors. In this process, the

parameters are initialized with random values and then

successively iterated until convergence within a prescribed

limit. The partial derivatives used to compute the incre-

ments are given by

oF

oa1
¼ e�

y�b1
c1ð Þ2

;

oF

ob1
¼ 2a1

y� b1ð Þ
c21

e�
y�b1
c1ð Þ2 and

oF

oc1
¼ 2a1

y� b1ð Þ2
c31

e�
y�b1
c1ð Þ2

:

This technique could obviously be generalized to multiple

Gaussian basis functions, although the convergence prop-

erty gets worse as the number of parameters increases.

However, it is necessary, in some scenarios, to increase the

number of Gaussian basis functions for efficient approxi-

mation of noisy experimental data. Though the order 8 of

MOG works reasonably well in case of our data, it is still a

hyper parameter that needs to be tuned for approximating

diverse data sets. For first convergence, we have used

optimized existing algorithms [19] to compute the param-

eters of MOG during function estimation.

4.3 Abel deconvolution integral

The coefficients of Gaussian Model, obtained in the func-

tion estimator stage are used to construct a continuous

function F(y, z) of the specific order for the variation of

intensity in each row (z). These coefficients of MOG are

computed by non-linear least square fitting method. In

order to obtain the emission function f ðq; zÞ, the integral

form of inverse Abel transform [10], as given by equation

(4), has been used. Thus, the estimated continuous function

F(y, z) is Abel deconvoluted, and the data corresponding to

emission function in each row are acquired [12, 13]. For

deconvolution to be meaningful cylindrical symmetry is

mandatory. Though the experimental results are not 100%

symmetric we actually ignore the asymmetry as the varia-

tions are minimal. This is also the reason why we do only

deconvolution on one side. Assuming cylindrical symmetry

the deconvolution process, irrespective of whether it is

done on left or the right half, will give the same result.

Therefore, in order to address this issue, only one side of

Figure 4. Comparison among Polynomial, Gaussian and Fourier

approximation of discrete data points. It is observed that the

Gaussian mixture model approximates the data significantly better

than Polynomial and Fourier approximation.

Figure 5. Mixture of eight individual Gaussian distributions.

Table 1. Statistical inference of Goodness Of Fit (GOF).

Statistical inference Polynomial Fourier MOG

Regression squared (R-squared) 0.8544 0.9750 0.9994

Adjusted R-squared (AdjR-

squared)

0.8506 0.9736 0.9993

Root Mean Square Error (RMSE) 722.7 303.6 47.9
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the projected image F(y, z) is deconvoluted to obtain one

side of f ðq; zÞ and then it is reflected along the vertical axis

(Z) for complete reconstruction of f ðq; zÞ. In practice, the

deviation from symmetry is minimal when compared with

the average counts, and hence, it is reasonable to tackle the

asymmetry issue in such manner. This procedure is fol-

lowed for all the rows of the enhanced image to obtain

spatial field information of the entire image.

The analytical solution of Abel inversion can be derived

as following. For reducing the complexity, we have shown

the derivation for one Gaussian basis i.e.Fðy; zÞ ¼ ae�
y�b

cð Þ2

with a ¼ 1; b ¼ 0; c ¼ 1. Now, f ðq; zÞ can be obtained from
F(y, z) by

f ðq; zÞ ¼ �1

p

Z 1

y¼q

dF

dy

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � q2
p ; 8z

¼ �1

p

Z 1

y¼q

ae�
y�b

cð Þ2 �2ð Þ y� b

c

� �

1

c

� �

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � q2
p

¼ 2

p

Z 1

y¼q

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � q2
p e�y2dy;

substituting a ¼ 1; b ¼ 0; c ¼ 1

¼ 2e�q
2

p

Z 1

u¼0

e�u2du; substituting
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � q2
p

¼ u

Gaussian error function is a special integral given by the

following equation.

erf ðxÞ ¼
Z x

t¼0

2e�t2

ffiffiffi

p
p dt ð10Þ

Therefore, f ðq; zÞ can be reduced further to

f ðq; zÞ ¼ e�q
2

ffiffiffi

p
p

Z 1

0

2e�u2

ffiffiffi

p
p du

¼ e�q
2

ffiffiffi

p
p erf ð1Þ

¼ e�q
2

ffiffiffi

p
p ; *erf ð1Þ ¼ 1

This approach can be extended to higher order Gaussian

basis functions in the similar manner.

4.4 Spatial distribution of data

One of the important aspects of this processing is to arrange

the data in spatial coordinate frame. After performing Abel

deconvolution, the deconvoluted image is obtained in pixel

coordinate frame which needs to be converted into spatial

domain in order to analyse better in real world units such as

cm, mm, etc. In order to achieve this, we have used the

stored relevant scaling information to convert from pixel

coordinate frame to spatial coordinate frame. The scaling

information is obtained by estimating the pixel resolution

from images of standard calibration targets. By proper

utilization of this information, Abel inverted image is rep-

resented in spatial coordinate frame. The pseudo codes for

coefficient extraction and Abel deconvolution are given in

Algorithm 1 and Algorithm 2 respectively.
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4.5 Proposed algorithm
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4.6 Computational complexity

One major advantage of using mixture of Gaussian is the

number of transcendental operations involved in computing

the coefficients of fitted curve. This model requires three

transcendental operations for computing an; bn; cn (Eq. (7)),

in contrast with ASAI [13] which requires four transcen-

dental operations between two discrete data points. The

worst case time complexity of the proposed algorithm (4.5)

is O(n) because it takes O(1) time in computing the coef-

ficients of each n row of an n�m image where as the time

complexity of ASAI is Oðn2Þ [13]. Though FAI algorithm

[13] uses less number of transcendental operations than the

proposed algorithm, it doesn’t adapt to the changes in

characteristics of data points. The proposed algorithm can

adapt this change as the coefficients involved in our model

depend on input data. Also, it performs less but not the least

number of transcendental operations. It has storage space

complexity of Oðn2Þ in order to store the resulting image.

The coefficients of the model can be pre-computed and

stored prior to the execution of the Abel integration which

helps to boost the speed. The Abel integration algorithm is

also of O(n) time complexity which can be computed in the

similar manner as in coefficient generation. Thus, the

overall time complexity of the algorithm is O(n) by the

addition rule of measuring worst case time complexity [20].

Above all, the proposed algorithm meets the requirement of

using minimal transcendental operations with the ability to

capture necessary changes in the input data.

Figure 6. (a) Photograph of flame from a standard swirl burner. (b) Time averaged 2D-velocity distribution along the axial plane.

(c) Time averaged OH chemiluminescence image. (d) Abel deconvoluted image. (e) Multi-layered velocity field overlapped with Abel

deconvoluted OH* image as contour plot.
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5. Experimental details and analysis

The intended application of the newly developed algo-

rithm is explained in figure 6. The exemplary images shown

correspond to optical and laser diagnostic investigations

conducted in a swirl stabilized, standard burner with

methane as fuel [21]. Figure 6(a) shows the photograph of

the flame, and the corresponding time averaged OH* image

captured using an ICCD camera (La Vision, Model:

Nanostar, 12 bit, 1280 x 1024 pixels) is shown in fig-

ure 6(c). The burner is operated with an air and fuel flow

rates of 200 lpm and 18.9 lpm respectively, resulting in a

thermal power of 11.1 kW. The burner operated in non-

premixed mode at atmospheric conditions produced a tur-

bulent flame at the investigated conditions. The OH* ima-

ges are captured with an exposure time of 100

microseconds, and 300 such instantaneous images are used

to generate the time averaged image. In general the domi-

nant noise source in scientific grade CCD and ICCD cam-

eras are shot noise (the variations in the photoelectrons

generated at each pixel) and the dark current read noise.

The dark current read noise is negligible in our case owing

to the short exposure and readout times. Post processing of

the raw images was done to correct the camera chip sen-

sitivity or shot noise and background noise (signals coming

from unwanted background light). Shot noise usually fol-

low Poisson distribution. For large numbers, the Poisson

distribution tend to follow normal distribution, and the

elementary events such as photons, electrons etc. are no

longer observed individually. Typically this makes shot

noise in actual observations indistinguishable from true

Gaussian noise, and hence, the necessity of adaptive

smoothing in image enhancement process. Variations in the

camera chip sensitivity is normalized using an ensemble-

average image of a uniformly illuminated screen. The

ensemble averaged background image is obtained using the

same camera and intensifier settings with the flame extin-

guished. By uniform illumination in the experimental setup

we try to minimize noise due to variable illumination,

though not completely, and by edge adaptive smoothing we

try to remove the AWGN noise up to some extent. It is

evident from the flame photograph that the flame is lifted

from the burner exit. One of the goals is to understand the

influence of underlying local turbulent velocity field on the

flame stabilization and heat release o r in other words, the

underlying physical mechanism that enables the flame to

stabilize against such high velocity flows. One way is by

pixel-to-pixel comparison of the flame data with the cor-

responding velocity information. This implies that spatially

resolved information about the velocity field along with the

information about the flame/reactant species is

indispensable.

The 2D vector field is obtained using a laser based

diagnostic technique called Particle Image Velocimetry

(a) (b) (c)

Figure 7. Abel deconvolution without and with image enhancement (IE) are shown in (a) and (b) respectively. It is evident that the

edge adaptive smoothing of input image alleviates the adverse effect of unwanted noise signals in the deconvoluted image. (c) Intensity

profile along a fixed row (here, 313) of deconvoluted images with and without IE.

Figure 8. Qualitative comparison of the proposed method

(b) with one of the state-of-the-art methods (a) from literature.

The exemplary image shows the deconvoluted chemiluminescence

image from a swirl stabilized burner. Since any one side is

reflected to reconstruct the complete image, one can compare

either side of both outcomes to draw inferences regarding the

efficacy of the method.
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(PIV) [22], where the displacement vector is calculated

using auto-correlation or cross correlation techniques.

Using the time between the laser shots and the physical

pixel resolution of the camera the velocity is then calcu-

lated from the displacement vector. As the PIV data is

spatially resolved in 2D, the missing element in this anal-

ysis is the spatially resolved information about the reactive

species. So, the Abel deconvolution algorithm is employed

on the time averaged OH* images to obtain the 2D spatially

resolved information as shown in figure 6(d). Due to the

axial symmetry only one half of the image is shown. The

time averaged and planar vector field corresponding to the

flow conditions is shown in figure 6(b). Here the red and

black colour vectors indicate the maximum and minimum

velocities respectively. As OH* is a measure of the heat

release, by overlapping the Abel deconvoluted OH* image

on the 2D-PIV image a deeper insight into the turbulence-

chemistry (heat release) interactions can be obtained. Such

a multi-layered image is shown in figure 6(e) where the

planar velocity field is overlapped with Abel deconvoluted

OH* images in contour plot. The image gives a good

impression of the flow field conditions in which the flame is

stabilizing. Just ahead of the flame front there is an apparent

deceleration of the flow field and also the OH* contours of

maximum heat release are located in regions of relatively

lower local velocities. Here the reader is reminded that 2D

images do not give the complete picture as the turbulence -

flame interactions in such flows are highly three dimen-

sional in nature. However the example clearly highlights

the importance and the benefits of the Abel deconvolution

algorithm in analysis of such combustion related

phenomena.

In order to validate the relevance of image enhance-

ment, we have compared the Abel deconvolution process

with and without the proposed pre-processing i.e. edge

adaptive Gaussian smoothing in an exemplary deconvo-

luted flame image as shown in figure 7. The image

enhancement process imposes additional degree of

smoothness on the input image which is reflected in the

deconvoluted images. From this comparison, we report

that the edge adaptive smoothing lessens the effect of

unwanted signals in such applications. From figure 7(c), it

is apparent that the MOG model still lacks smooth tran-

sition in intensity, mainly due to high fluctuation in raw

data as a result of unconstrained noisy environment.

However, enhancing the degree of smoothness prior to

fitting MOG model resolves this issue up to some extent,

as can be inferred from figure 7(b). Further, we have

compared our approach with one of the state-of-the-art

methods [23] dealing with similar issues as ours. As fig-

ure 8 indicates, the state-of-the-art method suffers from

adverse effects of noisy environment, however, the pro-

posed algorithm could suppress these unwanted signals

and hence, it could impose higher degree of smoothness

by simultaneously leveraging the image enhancement and

Gaussian mixture model. The variation of intensity

towards the axis of symmetry is expected due to the

influence of heat release from the burner exit. The state-

of-the-art method, as shown in figure 8(a), does not have

the provision to regularize inversion by imposing

smoothness constraint on acquired raw data. This results

in abrupt fluctuations in the reconstructed scalar field.

However, the proposed reconstruction, as shown in fig-

ure 8(b), alleviates this effect through constrained regu-

larization. Due to unavailability of continuous

reconstructed profile in the state-of-the-art method, we

have quantized our continuous reconstructed profile and

compared with the available quantized version of the

state-of-the-art method. The efficacy of inversion can be

suitably inferred from this comparison, as shown in fig-

ure 8, by focusing on each quantized region of both the

images. The proposed method has fewer fluctuations in

each quantized region of the state-of-the-art method that

leads to marginally superior inversion. However, as the

final reconstruction is greatly influenced by the quality of

the raw data, which again depends on the experimental

settings, it is not possible to have a concrete conclusion on

the superiority of the new method from the images here.

What is clear from figure 9 is that the proposed MOG

based Abel inversion through constrained regularization is

proved to be equally good from the application of point of

view and hence, can be suitably used as an alternative to

the conventional methods.

The obtained results asserts that the proposed technique

using standard Abel inversion for the application in com-

bustion research is useful where limited infrastructure is

available for acquiring the expensive laser diagnostics

methods like planar laser induced fluorescence of CH rad-

ical (CH-PLIF) image. Our findings indicates, the applica-

tion of MOG prior to deconvolution approximates the

discrete data points relatively better than the other com-

pared methods. Based on the intensity profile and qualita-

tive comparison among various standard methods, we

believe that the proposed framework is an alternative way

to achieve the desired results and it works satisfactorily

well compared to other standard techniques in the adopted

experimental setting.

6. Conclusion

Abel transformation finds its applications in many research

fields including plasma diagnostics, X-ray radiography etc.

In this paper, we critically analyze the inherent issues of

Abel deconvolution and propose a generic framework to

tackle these issues up to some extent. The proposed algo-

rithm gave maximum efficacy with the adopted image

acquisition settings. Moreover, the proposed framework

offers a provision to eliminate a certain amount of

unwanted signals which is essential to be removed in many

scenarios. Of particular interest is the extraction of 2D and
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spatially resolved electronically excited emission from the

hydroxyl radical (OH* chemiluminescence) in axisym-

metric flames. The deconvoluted OH* image overlapped

with the time-averaged 2D velocity plot from the same

burner highlights the importance and effectiveness of the

algorithm in combustion research. Above all, the algorithm

meets the requirement of performing Abel inversion in O(n)

time and Oðn2Þ space complexity through regularization by

imposing smoothness constraint over acquired raw images.
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