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Abstract

The main aim of this article is to study non-singular version of Moser-Trudinger and
Adams-Moser-Trudinger inequalities and the singular version of Moser-Trudinger equality
in the Cartesian product of Sobolev spaces. As an application of these inequalities, we
study a system of Kirchhoff equations with exponential non-linearity of Choquard type.
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1 Introduction and main results

Let Q be a smooth bounded domain in R™. Then the classical Sobolev space embedding says

that
np

n—p

Wy P() < LP (Q) if n > p where p* =
or equivalently

sup / |ul" < oo for all 1 < r < p* where |[ul/? ,, = / |VulPdx
<1Ja Wo () Jq

u
el 10y <

and in the limiting case p = n, Woln(Q) — L"(2) for all 1 < r < oo but not embedded in
L>(9). The maximal exponent p* is called as Sobolev critical exponent. Hence, a natural
question in connection with Orlicz space embeddings is to find a function ¢ : R — R with

maximal growth such that
sup / d(u)dr < .
IIUIIWé,n(Q)Sl Q
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In this connection, in 1960’s, Pohozaev [24] and Trudinger [26] independently answered the
question using the above function with ¢(t) = eXp(|t|%) — 1. Later on, in [20], Moser
improved the result by proving the following inequality which is popularly known as the
Moser-Trudinger inequality:

Theorem 1.1. Forn > 2, Q C R" is a bounded domain and u € Wol’n(Q),

sup / exp(a\u!ﬁ)daz < 00
<1Jo

el tim

1
if and only if @ < oy, where o, = nw,; "] and wy—1 = (n — 1)- dimensional surface area of
S

Consequently, Adams [2] extended the Moser’s inequality to higher order Sobolev spaces by
proving the following inequality which is known as Adams-Moser-Trudinger inequality:

Theorem 1.2. Let Q be a bounded domain in R™ and n,m € N satisfying m < n. Then for
all 0 < ¢ < (pm and u € W?’E(Q) we have

sup / exp(Clu|»=m)dr < oo,
[Vrul n  <1JQ
Lm ()
where Cpm s sharp and given by

n

o (i)

when m is odd,

B Wn—1 I (771_7;—’_1)
n,m = n/2gmp (m) e
n T 2 when m is even.
Wn—1 I (%5™)

The symbol V'™u denotes the m™-order gradient of u and is defined as

gm VAM=D/2 if m s odd,
u =
A2y if m is even

where A and V denotes the usual Laplacian and gradient operators respectively.

Using the interpolation of Hardy inequality and Moser-Trudinger inequality, Adimurthi-
Sandeep [1] established the singular Moser-Trudinger inequality for functions in VVO1 Q).
This was consequently extended by Lam-Lu [12] for functions in Wgn "™ () while proving the

following singular Adams-Moser-Trudinger inequality.

Theorem 1.3. Let 0 < o < n, Q be a bounded domain in R™ and n,m € N satisfying m < n.
Then for all 0 < k < Kqnm = (1 - %) Cn,m we have

exp(klu|7)
o sup /Qde < Q. (11)
uEW T, IVl gy o 1

If K > Kanm then the above supremum is infinite (i.e. Kqnm is sharp).



In recent years, numerous generalizations, extensions and applications of the Moser-
Trudinger and Adams-Trudinger-Moser inequalities have been widely explored and studied.
A vast amount of literature is available which are devoted to study these kinds of inequalities.
We refer readers to [1, 2, 12, 20] for such topics and the survey article [13] including the ref-
erences within. In the field of geometric analysis curvature and partial differential equations
where the nonlinear term behaves like exp <|t| ﬁ) as t — 00, these inequalities play a vital

role to carry out the analysis.

Motivated by the wide interest in the current literature, the aim of this paper is to answer
the question of maximal growth function in Cartesian product of Sobolev spaces and es-
tablish both Moser-Trudinger and Adams-Moser trudinger inequality alongwith the singular
Moser-Trudinger inequality in the Cartesian product of Sobolev spaces for n, m € N such that
n > 2m. Let . .

Y= Wy () x Wy (Q)

be the Banach space endowed with the norm

33

(s )y = (HUH%m . Al )
) WO ‘m (Q) WO ‘m (Q)

o = [ V™ ulmdz.

0

Recently, Megrez et al. [18] proved the following Moser-Trudinger inequality in the product
space for the case n =2, m =1 (i.e. Y = H}(Q) x H}(Q)). Precisely, they established - for
(u,v) € Y and 2 C R? a smooth bounded domain,

n
where [Ju||™
W,

m, %

sup / exp(p(u? +v?))dx < oo, provided p < 4.
ll(wv)lly=1/Q

In this article, we first establish the non-singular version of Moser-Trudinger and Adams-
Moser-Trudinger inequalities in higher dimensional product spaces. Precisely, we prove the
following new result:

Theorem 1.4. For (u,v) € ¥, n,m € N such that n > 2m and Q C R™ is a bounded domain,

we have
/ exp <@ <|u|rnm + |v|rnm>> dr < 0o
Q

for any © > 0. Moreover,

sup /Qexp (@ <|u|# + |v|#)) dx < oo, provided © < gn—m (1.2)

[l(u,)lly=1 n,m

n—2m
where 2y, = 27m=m . Furthermore if © > ﬁ, then there ezists a pair (u,v) € Y with
l(u,v)||ly =1 such that the supremum in (1.2) is infinite.

As an consequence of Theorem 1.4, we prove the following version of Lions’ Lemma [16] in
the product space ).



Theorem 1.5. Let (ug,vr) € Y such that ||(uk,vr)|ly =1 for all k and (ug,vi) — (u,v) #
(0,0) weakly in Y. Then for all p <

n,m

2n,m(1 = [[(w, 0) [ )=

sup [ exp (p (juel#5 + o5 ) ) o < .
keNJQ

Next, we prove the singular version of Moser-Trudinger inequality in the Cartesian product
of Sobolov spaces when m = 1.

Theorem 1.6. For (u,v) € ¥ = W™ (Q) x Wy (Q), n > 2, A € [0,n) and Q C R" is a
smooth bounded domain, we have

dr < 00

/ exp(B([ul "1 + [v|5-1))
Q

]t

for any B > 0. Moreover,

dr < oo if and only if —/— + — <1 (1.3)

v || A an, n

/exp(ﬁ(!uler\le)) 2,8 A
[[(u,0)[ly=1/Q

n—2
where 2, 1= 2,1 = 271,

Similarly we can prove singular and non-singular Moser-Trudinger inequalities in the product
space Z := Whn(Q) x WIn(Q) where Q C R” is a bounded domain endowed with the norm

1

o)z 2= (Hulfyan oy + I0lngy)

where HUH%/L”(Q) = /Q(|u|" + |Vu|™) dx. Precisely we establish the following new result.

Theorem 1.7. For (u,v) € Z,n > 2, A € [0,n) and Q C R™ be a smooth bounded domain,
we have

dr < 00

/ exp(B(jul ™ + |o|71))
Q

ot

for any B > 0. Moreover,

wp [ B+ )

A
()] z=1 ||

.
dr < oo if and only if 26 + A <1. (1.4)
a, n

As an application of Theorems 1.4 and 1.5, we study the existence of solution for the following
Kirchhoff system involving the exponential nonlinearity of Choquard type

—m </ \Vu]”dw) Aju = </ Mdy) filz,u,v), u>0 in Q,
Q o lz—yl»
(KCS) —m (/ ]V’u]"dz) Ajv = </ Mdy) fo(z,u,v), v>0 in Q,
Q Q

|z —yl
u,v =10 on 0f)



where Q is a smooth bounded domain, n > 2, 0 < g < n, m : RT — RT is a continuous
function, A,u := div(|Vu|""2Vu), F satisfies suitable growth assumptions and f; = g—f, fo=
%—f. The system of type (KCS) having doubly nonlocal feature was not studied in the
literature so far.

In 1883, Kirchhoff extends the classical D’Alembert wave equation to the following model:

L
Uy — M </ |ux|2> Uygy = 0
0

for t > 0 and 0 < x < L, where u(t,x) is the lateral displacement at the space coordinate x
and time ¢, m(t) = Ip)_% + ;;—%t, Y, is Young modulus, p is mass density, h is the cross section
area, L is the length of string, pg the initial axial tension. In the case of degenerate Kirchhoff
problems m(0) = 0 i.e initial axial tension is zero. From the physical point of view, m(0) = 0
can be interpreted as follows: The base tension of the string is zero and m measures the
change of the tension in the string caused by the change of its length during vibration. It
shows that the presence of nonlinear coefficient m is meaningful to be considered. We cite

[3, 4, 5, 14] and there references within for further considerations.

On an analogous note, the non-local problems involving the following convolution type non-
linearity
—Au+V(z)u= (Jz| " * F(z,u)) f(z,u) in R", pe(0,n)

got attention by a large scale of researchers due to its occurrence in several physical models.
In 1954, Pekar [23] used such equation to describe the quantum theory of a polaron at rest. In
1976, Choquard [15] used it to model an electron trapped in its own hole. In 2000, Bergé and
Couairon [7] studied standing waves of the non-linear non-local Schrodinger equation which
influence the propagation of electromagnetic waves in Plasma. These kind of non-linearities
also play a crucial role in the Bose-Einstein condensation [8]. For interested readers, we refer
the recent survey paper on Choquard equations by Moroz and Schaftingen [21] and Mukherjee
and Sreenadh [22]. In 2014, Li [17] studied the non-degenerate Choquard equation with
Kirchhoff operator in R? and using the method of Nehari manifold established the existence
of ground state solution. In [25], authors studied the existence of non-negative solutions
of a Schrédinger-Choquard-Kirchoff type p-fractional equation via variational methods. The
problem of the type (K C'S) for the single equation, n = 2 and without Choquard non-linearity,
i.e.

—-m </ \Vu]2> Au= f(z,u) inQ, uw=0 in R,
Q

was studied by Figueiredo and Severo [9] which was generalized for n-Laplace equation by
Goyal et al [10]. Recently in [5, 6], authors have studied the Kirchhoff-Choquard problem
with exponential nonlinearity in the case of a single equation and proved the existence of
solution using variational methods.

Coming to the system of equations, Megrez et al. [18] studied the following parametric
gradient system with exponential nonlinearity

— Au = u?+ fi(u,v), >0 in €,

—Av = !+ fo(u,v), u>0 in Q,
u,v =0 on 0,
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where 0 C R? is a smooth bounded domain, ¢ € (0,1) and proved the existence and non-
existence result for a suitable range of A by using generalized version of mountain-pass lemma.
Motivated from the above articles, we study the Kirchhoff system of equations (KCS) with
exponential nonlinearity of Choquard type. To the best of our knowledge there is no work
available till date, for Kirchhoff system involving exponential non-linearity of Choquard type
even for n=2 and m(t) = 1. So, in this regard our work is first of its kind. Also on an
important note, we work with the nonlinear n-Laplace operator for n > 2. .

We recall the well known Hardy-Littlewood-Sobolev inequality:

Proposition 1.1. Let t,7 > 1 and 0 < p < n with 1/t + p/n+ 1/r =2, f € LY(R") and
h € L"(R™). Then there exists a sharp constant C(t,n,u,r) > 0, independent of f,h such
that

L[ T ndy < e ) e bl e (15)

Ift=r= 52

_ I(5-5
O(tnnu’r) - C(”)M) - 7T2 (TL %)

In this case there is equality in (1.5) if and only if f = (constant) h and

—(2n—p)
2

h(z) = A(v* + |z — af)
for some A€ C,0#~v€R and a € R".

Now we state the assumptions on m and f for the problem (KCS). Let m : Rt — R" be a
continuous function satisfying the following conditions:

(ml) M(t+s) > M(t)+ M(s) for all t,s > 0 where M (t) is the primitive of the function m.
(m2) There exist constants cg,c1,co > 0 and £ > 0 such that for some 7,z € RT
m(t) > co or m(t) >t*, for allt >0
and )
m(t) < ¢+ cot”, for all £ > t.
(m3) The map ¢ w is non-increasing for ¢ > 0.

We remark that the assumption (m2) covers both degenerate as well as non-degenerate case
of the Kirchhoff term.

Example 1: An example of a function m satisfying (m1) — (m3) is m(t) = do + dit® for
6 <1 and dy,d; > 0.

Let the function F : Q x R?> — R be continuously diﬁ‘eren‘gbiable Witlh respect to second and
third variable and of the form F'(z,t,s) = h(x,t,s)exp(|t|»T + |s|7T) such that

8F _n_ _n_
Ji(@,tys) = S (@t 8) = b, ) exp((t] 7 + [s| 1),

8F _n_ _n_
fola,tys) 1= G (@t 8) = oo, t.5) exp((t] 7 + [s| 7).

We assume h;’s for i = 1,2 are continuous functions satisfying the following conditions-



existence

basic

(f1) hi(z,t,s) = 0 when either t < 0 or s < 0 and h;(z,t,s) > 0 when t,s > 0, for all z € Q
and i =1,2.

(f2) For any e >0 and ¢ = 1,2

lim sup h;(z,t,s) exp(—e(!t!ﬁ + \s\%)) =0,

t,s—00 €

lim inf h;(z,t,s) exp(e(\t\n%l + ‘S‘J—ll)) = o0.

1,600 2cQ)
(f3) There exists
max {n -1, w} when m is non-degenerate,
l
i max {n -1, n(z2—|— 1), n(r2—|— D) } when m is degenerate.
such that the maps ¢ — £ (m’t’s), sy 20Eh8) g increasing functions of ¢ (uniformly in

It]! Is[!
s and x) and s (uniformly in ¢ and x) respectively.

(f4) There exist g, sg,tg, My > 0 such that s?F(z,t,s) < Mgfa(x,t,s) for all s > sp and
t1F (x,t,s) < Mo fi(z,t,s) for all t > ty uniformly in z € Q.

(f5) There exists a v satisfying "T_z < 7y such that « s)h—?%o 0 f;(er’;j) = 0 holds for i =1,2.

Theorem 1.8. Let m satisfies (ml) — (m3) and f satisfies (f1) — (f5) and

im (fl(ZE,t,S)t+f2($,t,S)S)F(ZE,t,S)
b explg(f 7 + 16l )

= oo uniformly in z € €.

for some q > 2. Then there exists a positive weak solution of the problem (KC'S).

Turning to the layout of the paper: In section 2, we prove the Theorems 1.4, 1.5, 1.6, 1.7.
In section 3, as an application of Theorem 1.4 ,1.5, 1.7, we prove the main existence result:
Theorem 1.8 for the system of equations (KCYS).

2 Proof of the main results

Lemma 2.1. Ifa,b > 0 such that a +b =1 then a® + b* < 2'=% for all 0 < o < 1.

Proof. Let r: (0,1] x (0,1] — R such that r(a,b) = a® + b* and a + b = 1 then
r(a):=r(a,1—a)=a"+ (1 —a)”

and p
%F(a) =a@® -1 -a)*1H=0

gives a = %, which is the point of maximum (since % (d%f”) (a)‘a: 1 < 0 ). Therefore the

maximum value of 7 in (0,1] is 2172. O



Proof of Theorem 1.4:

We denote || - || :=|| - H m, I Without loss of generality, let (u,v) € Y\ {(0,0)} be such

™ Q)
that ||(u,v)]] v = 1. If elther u =0 or v =0, the result follows from Theorem 1.2.

We set a = - a = |u||m and b = [|v|| then Lemma 2.1 gives us that

_n _n
a7 o]

<1

2n7m 2n,m

n—2m

where 2, m—ZnM.

Case 1: Let ”“”nmm + ”v”n t <.

n m

Then there exists 1 < ¢ := c(u v) < oo such that

1
+-=1.
2n,m 2n,m &

n n
fufl 7= ol

Using the generalized Holder’s inequality and © < gZ—Z we obtain

/ exp(O(|u] 77 + [v] 7))
Q

||uHrnm ”anfm
n 2n,m = e
) " _n_ - v n—m ’
<1 (/Q exp(©2,.m <ﬁ> )) </Q exp(©2nm (ﬁ) )>
L e

ot () 5 (Lot ()7

where C' is a positive constant depending on |2| but independent of u, v.

Case 2: ”"ggi—% + ”g”ﬁ =1.
Applying the Holder’s inequality and © < g”’m we obtain

[ ep(©(ul™7 + 1ol =)

Q

. Hfzuﬁ Hvﬁﬁ
< ( [ ewi©2m (1)) [ etz (u) )
0 [[ul 0 |v]]
Wl o] P

oo RN
g( | exp(Gun (%))) ( [ exp(Gum (H) >>

(2.)

(2.

Now by combining (2.1), (2.2) and taking supremum over ||(u,v)|y = 1, we obtain the desired
inequality (1.2). For the remaining part of the proof, we assume that 0 € Q and Seek use of

the Adams function to construct a sequence of test functions. Let us denote B(0, l) = Bl as
a ball with center 0 and radius [ in R™ then without loss of generality, we can assume that
B(0,1) C Q for € (0,1). We recall the following result (see [11]): For [ € (0, 1), there exists

U, € {u S Wom’E(Q) : U‘Bl = 1}

(2.3)



such that

U = Co o (B By) < | —2m
m nlog (7)
where C,, » (K, E) is the conductor capacity of K in £ whenever £ is an open set and K is

2 (K3 E) & inf{|ju|m : u € C°(E),u|lx = 1}. Let us

set 0 >0 and [ = %, for k € N. Also we define

relatively compact subset of F and C,,,

n—m

nlog(k)\ = AN '
@) = (7@,”@ > Uy (2) it fo] <o
0 if |z| > o.
Then we have Ak(x)|BU = <"éf;—g(k)>7 and ||Ag|| <1, Now we consider
z ,m

Zy, = cqwy, and Vi = cowy,

where wy(x) = AL and cq,co € RT verifies

n n n

_n
i +c =land ¢/ ™ +¢c " =2,

which implies that supp(wy) C B, (0) and ||wg|| = 1 for all k. The existence of ¢;,cy can be
proved using Lemma 2.1. Thus we obtain

33
33

125 Vidly = (12305 + Vil ) ™ = (ef" w45 |7

n o m
n

= [[wrll(ef” +¢57)m = 1.

So if © > gZ—’Z, then for some € > 0, © = (1 + e)éZ—Z which gives that

n n

/QGXP@MW + [Ve|7m)) > / exp <<1 ) g 75 (e +c;m>>>

B n,m
3

— / EMUT) > Osk€ — 00 as k — oo.
Bo
£

This completes the proof. O
Proof of Theorem 1.5 : Using Brezis-Lieb lemma, it is easy to see that

li — _ )| = 1— a

Jim (g — ), (o — ) =1~ [, o))

and

ol 77 <l = v+ ful ) + g — w2 ] + Jul 7 [, — wl) (2.4)

where ¢ % ¢ (n,m) > 0. Now for any € > 0, from Young’s inequality we have that

0 —m b\ "m
(ea)m + = m(—) .

ab <

=3

n €



This gives us
\uk\rnm < ((1 + Crem + Cleﬁ)\uk - u!ﬁ +(1+Crem + Cleﬁ)\u]rnm>
= Ce|ug, — u\ﬁ + C{,E\u]# (say).
Similarly we also have

n

o™ < Oy eloy, — v|[T7 + O Jo|7.

Therefore by using Holder inequality and above estimates we obtain,

/QGXP <p(|uk|# + |vk|ﬁ)> dr < (/Q exp (pC’LErl <|uk ol U|#)) dw) 1
1
(ot s o)) )

n

< Clnmuvvra) ([ exp (pCnen (s = ). (o = o)) 7
Q

1

<<H(u’“ _|Z];’(_”Z|— U)Hy> - i <H(Uk —|Z])€,?v:|— v)\|y> ”m>> dm) E

where 71 and r9 are Holder conjugate to each other and C'(n,m, u,v,rs) is a positive constant
independent of k. Now since C; . — 1 as € — 0, by choosing € > 0 small enough and r; > 1
very close to 1 such that
Lo _m C ,
priCue(l — [[(u,v)[[3) m=m < 2=

2n,m

we get the desired result, by using Theorem 1.4. O

To prove the following Singular Moser-Trudinger inequality in cartesian product of Sobolev
space taking m = 1 and using the idea of Theorem 2.1 in [1].

Proof of Theorem 1.6:

We denote || - || := | - ”Wl,n(Q) in this proof. Let (u,v) € Y be such that ||(u,v)[y = 1,
0

A € (0,n) and 8 > 0. Then following two cases arise:

Case 1: Let % + % < 1 then we choose t > 1 such that

—=1.
fom n

2 At
o

Now by using Cauchy-Schwarz inequality and Theorem 1.4, we obtain

At

_n_ _n_ B2n At
/ PPl T </ exp (ﬁ (|u|,;—i1 + Ivlﬁ)>> B (/ 1 ) <C
Q ‘x’A N Q 2, Q ‘x’? B

(2.5)

where C is a constant independent of u, v.

Case 2: Let % + % = 1. Then from standard symmetrization and density arguments we

10



can reduce to the case € being a ball B(0, R) with centre origin and radius R and u,v being

positive smooth and radial functions. Therefore

R
/ (IVul" + Vo) de = wn / (' ()" + (@ (r))")r"tdr
B(0,R) 0

and

exp (52 (Jul ™7 + [u]7T) ) R .
/ dx = / exp <%(lu\"1 + \U\M)) oLy
B(O,R) 0

|x|(1—s)n 2,

where s = % so that A = (1 — s)n. Now we set

1
s

u(r) = Snv;Llu(r ) and o(r) = Sn%lv(r%) for r € [0, R?].

Therefore

R R®
/ (' (r)" + (o' (r))")r" = / (@ (r)" + (@' (r)")r"~ dr,
0 0

R R?
_n_ _n_ 1 _n_ _n_
/ exp %(|u|n71 -+ |U|n71) ',"sn_ld’]" = — / exp %(|a|n—1 + |f[)|n71) rn_ldr.
0 2n 5 Jo

2

Now by combining (2.6)-(2.9) and taking supremum, we obtain

dx

exp (3 (jul 7T + o] 7))
sup / —
Iww)ly=1JB0,R) |z[(1=9)n

Rs(n_l) R _n_ _n_
< sup / exp <%(|&|n1 + |f)|n1)> dr < oo
l@a)ly=1 5 Jo 2n

(2.6)

(2.7)

(2.8)

(2.9)

which is the desired inequality. For the remaining part of the proof, we assume 0 €  and

define
P

(log k)", 0 < [a] < &

1 P

wi(x) = T log (M) P

L) —F <l <o
Wit | (logk)n kK

0, 2| = p

such that supp(wy) C B,(0) and ||wg|| = 1 for all k. Let ¢1,c2 € RT such that ¢ + ¢ =1

n

_n _n n—2
and ¢{"" + ¢y~ = 271 (The existence of ¢1, ¢y can be proved by taking the maximum of

function mentioned in Lemma 2.1).
Also we define
Uk = C1Wg and Vk = CQWE

such that

1 1
= (&1 [Jw]|* + e llwr ") = lwkl[(e7 + 3)m = 1.

3=

10k, Villy = (10" + Vil™)

11



Now let 8> (1— 2) 3‘—:,thenforsomee>0,5:(14-6)(1—%)3—:and

exp (BT + Ve 7)) exp ((1+€) (1= 2) g2l 71 (e +¢5))
J 2,
Q B

|z} P |z}
k
> e (1=5)+2 > 03]{76(”_)\) — 00 as k — oo.
Bp
k
O
Proof of Theorem 1.7: The proof can be done by following the same steps as in Theorems
1.4 and 1.6. O

3 Applications

In this section, we study the following system of n-Kirchhoff Choquard equations with expo-
nential nonlinearity
F(y, u,v)

- m(/ |Vul"dx)Apu = <
0 o lz—yl*

(KCS) —m(/ |V’U|nd$)AnU = < Mdy) f2(3:7u7v)7 v>0 in Q7
Q o lz—yl*

u,v =0 on 0f),

dy> filz,u,v), u>0 in Q,

where (1 is a smooth bounded domain in R", 0 < p < n and m, f satisfies assumptions
(m1) — (m3) and (f1) — (f5). Let P := W, (Q) x Wy () endowed with the graph norm

1

n

)l = (el gy + Il )
TVLVL"(Q) = Jo |Vu|"dx. The study of the elliptic system (KCS) is motivated by
0
Theorems 1.4 and 1.5. Following is the notion of weak solution for (KC'S).

Definition 3.1. A function (u,v) € P is said to be weak solution of (KCS) if for all (¢,) €
P, it satisfies

where |[Jul|

m(|Ju, v]|™) </ \Vu]"_2VuV¢dx+/ ]Vv]"_2VvV1/1dx>
Q Q

:A( 5@ﬂ9@>m@www+hmmmww-

a lz—yl
We define the energy functional J on P as
1 1 F(y,u,v)
J(u,v) = —M(||u,v||" ——/( %dy>F:E,u,v dx. 3.1
() = Mol = 5 [ (] T ) P (31)

Using assumption (f1) — (f3), we get that for any e > 0,p > 1 and 1 < k <[+ 1 there exist
constant C, Co such that for any (x,t,s) € Q x R?

|F(w,t,5)| < Cr(ls]® + [tF) + Ca(|s|P + [¢P) exp((1 + €)(|s|7T + [(}71)).  (3.2)

Then by using Sobolev embedding and Hardy-Littlewood Sobolev inequality, we obtain F'(u,v) €
L1(Q x Q) for any ¢ > 1 and the energy functional J is well defined in P.

12
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3.1 Mountain Pass geometry and Analysis of Palais-Smale sequence

In this section we show that the energy functional J satisfies the mountain pass geometry
and derive the integral estimates of Choquard term by exploiting the weak convergence of
Palais-Smale squence in appropriate spaces.

Lemma 3.1. Assume m and f satisfies (m2) and (f1) — (f3) respectively then
(i) There exists p > 0 such that J(u,v) > o when ||(u,v)| = p, for some o > 0.
(i1) There exists a (a,0) € P such that J(a,v) < 0 and ||(a,0)| > p.

Proof. Let (u,v) € P such that ||(u,v)| = p (to be determined later). Then from (3.2),
Proposition 1.1, Sobolev embedding, Holder inequality, we have for any ¢ > 0, p > 1 and
1 <k<l+1 we have

F(y7u7v) ) 2
d F ) ) d SC M F ) ) n
([T dy) P < ConplF@aol

2n
2n—p
< [cl (/ fufF + w)
Q
2n—p

_2n 1+¢€)2 _n_ _n_
#Ca ([ Qul + 10977 exp (D2 g 4 i) ) )|

< [cl<u<u,v>u>ﬁ”ﬁ

n n n 1 2n—p
2np 1 + € 4n U, v n—1 u|n—1 4+ |v|n-1 2 n
+ 0o (I 0) ) 5 (/exp<( Lt ] (” 2= ))) |
Q ne [[(w, v) || =1

3
An(1+€)p T
2n—p

If we choose € > 0 and p such that
obtain,

< ;‘—:, then by using Theorem 1.4 in above we

/ < L(?f’“’”)dy) F(z,u,v)dz < Cs|(u,0)|** + Cu|(u, v) . (3:3)
Q

o |z -yl
Niw by using (3.3) and (m2) (for non-degenerate Kirchhoff term), we get

J(u,v) > COM

— Cs]|(, 0)[I** = Cll (u, v) |
So choosing k > n/2, p > n/2 and p small enough such that J(u,v) > o when ||(u,v)| = p
for some o > 0 depending on p. Similarly for degenerate Kirchhoff term we get,

I (a, ) "=

J(u,v) = — Cs]|(w, 0)[I** — Cl|(u, v)|*?

and we can choose 2k > n(z + 1), 2p > n(z + 1) and p small enough such that ||(u,v)|| = p
and J(u,v) > & for some ¢ depending upon p.
Furthermore, again by using (m2), there exist constant ¢;, i = 1, 2,3 such that

c1
s o) [P o (w0) " s, A 1

M(|(uv)[") < q "+ 1) (3.4)

crIn(][(w, ) (") + e2| (w, v)[[" + ¢3 r=1

13



for ||(u,v)|| > t where

N S S
M(t) — cot — ————1"T1 r#£1,
c3 = (r+1)

M (%) — cot — ¢1 In(?) r=1.
Let (ug,vg) € P such that ug > 0,v9 > 0 and ||(ug, vp)|| = 1. Then by using (f3), there exists
p; >0,1=1,2,3 and K > "(TH) such that F(z,t,s) > p1|t|™ + pa|s|® — p3 and

/ (/ W@) F(x, €ug, Evo)da > C5¢2K — Cee™ + ¢, (3.5)
Q Q -

Finally by combining (3.4) and (3.5), we obtain J(§ug,&vg) — —oo as & — oo. Hence there
exists (u,0) € P such that J(a,0) < 0 and ||(@, )] > p. O

Lemma 3.2. Every Palais-Smale sequence is bounded in P.

Proof. Let (ug,vi) be a Palais-Smale sequence such that J(ug,vr) — ¢ and J'(ug, vg) — 0 as
k — oo for some ¢ € R. Therefore we have:

M (|| (ug, ve)[]”) / < Fy,Uk,vk

n eyl

—c (3.6)

) F(x,ug,vg)dx

and

\m<||<uk,vk>||"> ( [ 19w uvods + | |wk|“—2wkwdm>
. (3.7)

/< Fy’uk’”k >(fl(a:,umvk)(bJrf2(ﬂfauk7”k)1/’)dx < exll(¢, 9]

eyl

Now by using (f3) and (m3), there exists n > 5,60 > 2n such that
nF(z,t,s) < tfi(x,t,s) and nF(z,t,s) < sfa(z,t,s) for all (z,t,s) € Q x R?

and
1 1
EM (t) — gm(t)t in nonnegative and nondecreasing for ¢ > 0.
Then by taking ¢ = wug and ¢ = v in (3.7) along with (m2) (for both degenerate and

non-degenerate Kirchhoff terms) and above inequalities, we obtain
<J’(uk,vk) (ur, vr)) _ MI(ur, ve)l™) — m(ll (u, vr)[|™)

J(ug, vg) — n 4n ek, oI
/ < F!gfl;/’!zk > (f1(@, u, vr)ur + fo@, up, vr)or — 20F (2, up, v))d

> (50— 3 ) w00 w0l

11 .
o (5 - 32 ) Nuws )]

or

1 1 n—+z
(3 — 32 ) luw ol

v

(3.8)

14
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Also, from (3.6) and (3.7), we get for some constant C' > 0

(" (uk, vi), (g, vk)) [ (e, v )
— < 1 — . .
J(uk,vk) in <C + €k 47 (3 9)
Therefore, by combining (3.8) and (3.9), we obtain {(ux,vk)} is bounded in P. O

Lemma 3.3. Let {(ug,vx)} be a Palais-Smale sequence then up to a subsequence

(Vg |"2Vauy, — |Vu|" "2 Vu

. 1,n
[Vog|" 2V, — [Vo|" Vo } weakly in Wy ™(42)

Proof. From Lemma 3.2, we know that every Palais-Smale sequence satisfies (3.6) and (3.7)
and is bounded in P. So there exist u,v € WO1 "™(Q) such that up to a subsequence

up, — u, vy, — v weakly in Wy (Q).
up — u, v — v strongly in L9(Q) Vg > 1 and a.e. in .

Since |ug|" 4 |Vug|™ and |vg|™ +|Vvg|™ is bounded in L(€), so there exist two radon measures
1, 2 and two functions wy,vq € (L7=1(§2))" such that upto a subsequence

lug]™ + |Vug|™ — p1 and |vg|™ + [Vog|™ — pe in the sense of measure and

\Vug|" 2V — uq, |Vog[" 2V, — vy weakly in (L%(Q))" as k — oo.

We set 01,02 > 0 such that 5 M(O'l + 02)"11 <% and Xo, = {2z € Q: 1i(B(z) N Q) >
0;), for all » > 0} for i =1, 2 Then Xy, must be ﬁnlte sets and we claim that for any open
and relatively compact subset K of Q\ (X,, U X,,)

lim (/ Md?J) fl(l'vuk)vk)uk — lim (/ Md@/) fl(ZE,’LL,’U)'LL
K Q Q

k—o0 |z — y|# k—oo J i |z — y|#
(3.10)
and
F( F
lim y,uk,vk y ) falx, ug, vg)vg — hm / Mdy fa(x,u,v)v.
k=00 ISU—yI“ k=oo Ji \Ja |z =yl

(3.11)
Let 29 € K and r; > 0 be such that ;(B;,(z0) N Q) < o; and consider 1; € C*°(Q) satisfying
0<y;<lforxe,=1in B%(xo)ﬂﬁ and ¥; = 0in Q\ B, (xo) for i = 1,2. Then

lim lug|"+|Vug|"dz < lim (Jug|"+|Vugp ") p1dz = p1(By, (20)NQ) < o1
k—o0 B%(mo)ﬂQ k=00 JB,, (z0)n02

and

lim |vg|"+| Vo |*de < lim (o "+ VR ) pedr = pe(By, (20)NQ) < os.
k—o0 B%(zo)m k=00 JB,, (z0)nQ2

Then by choosing k € N large enough and ro := min{r;, 72} we get

[ (ur, vr) 125,

(Brg (20)19) / - (lue]" + [Vur]" + Jop|* + [Vor[*) < (o1 + 02). (3.12)
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Now by using (3.12), Theorem 1.7 with A = 0 and choosing € > 0 small enough and ¢ > 1
1
such that 23;31“(1 +€)(01 + 02)"T < & we get the following estimates for i = 1,2

2nq
/ |fi(33',Uk,’Uk)|2”7“dﬂj
B%l(mo)ﬂfl
_2nq_ 2n
:/ . |hi(x7ukvvk)|2n7q# exp <27’L_q

<2nq(1 +€)
exp [ ————
)nQ

—(fuel +|vk|m>) da

A (g5 -+ ) ) d

2 1 == e .
< C'e/ exp na (I+¢)(o1 + 0'2)”il el "7+ o] dx < C,
B

rg (z0)NQ2 2n —p ”(Ukavk)”z (Brg (20)N9)

(3.13)

for some constant C, > 0. First we prove (3.10), a similar proof provides (3.11). Consider

/ </ Md@/) f1(x, ug, vg)ug — (/ Mdy> fi(z,u,v)u

Brg o) | \Jo lz -yl o lz—yl

§/ < F(y,u,v)
B%l(xo)ﬁﬂ

Q |z —y»
Jr/ (/ Fy,u,vp) — Fly, u,v)
Brqg (zo)NQ2 Q
2
=11 + I (say).

dx

dx

dy) (fl(l'auk)vk)uk - fl(x,u,v)u)

dx

dy> fi(z, ug, v )ug

|z — yl|~

From (3.2), (3.13), Holder’s inequality and asymptotic growth of f; we obtain that families
{fi(x,uk, vp)ur} and {fo(z, ug,vi)vr} are equi-integrable over B%o(:no) NQ and p € (0,n)
gives

F(y,u,v)

o Wdy € L=(Q). (3.14)

Then (3.14) and Vitali’s convergence theorem combined with pointwise convergence of
fi(x, ug, vp)ugp — f1(z,u,v)u implies I; — 0. Now we show that I — 0 as & — oo. Then

by using semigroup property of the Riesz potential (see [19]) and (3.13) we get that for some
constant C' > 0 independent of k

/ (/ = y’umfg}:k— y|1:(y,u,v)dy> XB%Qnﬁ(iﬂ)fl(ﬂ?,Uk,vk)ukdm
</ </ |F( y,uk,v‘z;_jiy,u,v)!dy> |z, up, vg) —F(aj,u,v)|daj>
g (/ (/ XBign (?ﬁ%dy) XB%lmQ( x) f1(@, ug, vk) ukdx>

<C (/ </ |F( y,uk,l)‘i;_jlsy7u,v)!dy> |F(, ug, vi) — F(z,u,v \da:)
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Now we claim that

F( - F
lim (/ [F Y, s o) (y,u,v)\dy> |F'(z,up,vg) — F(x,u,v)|dr = 0. (3.15)

k—o0 |z — y|#

From (3.6) and , (3.7) we get that there exists a constant C,Cy > 0 (independent of k) such
that

F(
/ < yﬂuka > F(ZE,’LLk,Uk)dﬂj‘ < 017
e -yl

/ (/ Mdy) (fr(m, up, vi)ug + fo(z, ug, vi v )de < Co.
o \Ja

|z —y|»

(3.16)

We argue as along equation (3.19) in Lemma 3.4 in [5]. Consider

F( - F
/ (/ [P (y, g, i) <yvuv”)|dy> | (2, g, v) — F(@,u,0)|de <

|z =yl
/ (/ L X?‘i i mf(y’u’v)XB(y) dy> |F (2, ug, vg)xa(z) — Fx,u,v)xp(x)|dx
+2/Q </Q (F(y, ug, vi) xa(y )+F(’y;?ﬁvy)’53(y) +F(y,u,v)xD(y))dy> F(z, uy,, ) xo(z)de
+2/Q </Q (F(%umvk)XAéjy)_‘;ﬁ(%U,U)XB(y))dy> F(x,u,v)xp()dz
+/Q </Q F(y’&k’_w;)@w(y)dy) F(z,ug,vi)xc(x)dz
+/Q (/Q F(y‘,;,_v)ﬁf(y)dy> F(z,u,v)xp(x)de = I + I + I + I + I7.

where for a fixed M > 0
A={ze€Q:|ug| < M and |vy| < M}, B={zxe€Q:|u/ <M and |v| < M},

C={zeQ:|ug|>Mor |vg| > M} and D={z € Q:|ul>M or |v| > M}.

Now using (3.16), (f4), semigroup property of the Riesz Potential we obtain I; = o(M) for
j=4,...,7 when M is large enough and from Lebesgue dominated convergence theorem we
obtain I3 — 0 as k — oo. Hence (3.15) holds and Iy — 0 as k — oo. Now to conclude (3.10)
and (3.11), we repeat this procedure over a finite covering of balls using the fact that K is

compact. Now the remaining proof can be done by using the same arguments as in Lemma
3.4 in [5]. O

Lemma 3.4. Let {(ug,vr)} be a Palais-Smale sequence for the energy functional J. Then
there exists (u,v) € P such that upto a subsequence

F(z uk,vk F(z,u v)
/ < Tlr—yr >fz(a: U, v ) pd —>/ ( QW y> filx, u,v)pdz

forall p € CX(Q) and i = 1,2 and

< F(z uk,fuk
eyl

F(z,u,v)
o lz—y

> F(x, up, vg) — < dy> F(x,u,v)dz in LY(Q).
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The proof of the above Lemma follows from similar arguments as in Lemma 3.5 and Lemma
3.6 in [5].

Now we define the Mountain pass critical level and associated Nehari Manifold as

Ir= ’lygg t?[?}i J(7(t)) where I' = {~r € C([0,1],P) : v(0) = 0, J(y(1)) < 0}

and

N = {(u,v) € (Wy™()\ {0})? : (J' (w,v), (u,v)) = 0}

Lemma 3.5. Let I"* = inf ey J(u). Assume (m3), (f3) and for some q > 2

(fr(z,t,5)t + fo(,t, 5)s)F(x,t,s) oo uniformly in x € Q0 (3.17)

1m [ n
b exp(g T+ Js| )

1 2n — a, \"!
<1 and 0 <1* < =M H) &n .
n 2n 2n

Proof. Let (u,v) € N and h : (0,00) — R such that h(t) = J((tu,tv)). Then

holds then

B (t) = m(||(tu, to) | )" | (u, ) || — /Q ( /Q %@) (f1(, tu, to)u+ fa(z, tu, tv)v)da.

Since (u,v) € N, we get

h/(t) _ h/(t) o t2"_1<J/(u,v), (’LL,U)> — 752n—1 (mt(JJ‘TEZ’ZL;ﬂULn) _ m|(||(|1(bu;)1))|)||T|Ln)> H(U’U)H2n
2n—1 7F(y,u,v) T,U,V)U T, u,v)v)dx
et [ F2a) (oot ate o

([ B ) s o) ]
Q

o 1" — yl

Now (f3) implies, for any (z,s) € Q x R", the map r — rfi(z,7,8) —nF(z,r,s) and for any
(x,7) € Q x RT, the map s — sfa(x,r,s) —nF(z,r,s) is increasing on RT. Using this we get
rfi(z,r,s) —nF(x,r,s) >0 and sfa(x,r,5) — nF(z,r,s) >0 for all (z,r,5) € Q x R? which
implies

F(z,tu,tv)

tTL

Then for 0 < ¢t <1, x € Q and by using (m3) and (f3), we obtain

t— is non-decreasing for ¢ > 0.

m([|(tu, to) ") m({(w, 0)[")

vz e ( - ) N

£l (u, )| [, 0) "

o ([ s (e st
N (fg(a:,u,v)’u B fg(x,tu,tv)tv> Un($)>] > 0.

un (tv)n
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This gives that A/(t) > 0 for 0 < ¢t < 1 and A/(t) < 0 for t > 1. Hence J(u,v) =
max;>o J(tu,tv). Now we define g : [0,1] — P as g(t) = (tou,tov)t where ty > 1 is such
that J((tou,tov)) < 0. So, g € I' which gives
I* < J(g(t)) < J(tu,tv) = J .
< mmax J(9(t)) < meax J(tu, tv) = J(u,v)
Since w € N is arbitrary, we get [* < I**. For u,v # 0, J(tu,tv) — —oo0 as t — oo (from
Lemma 3.1) and by definition I* < max,c(o 1) J(tu,tv) for (u,v) € (WOI"(Q)\{O})2 satisfying
J(u,v) < 0. So, it is enough to prove that there exists a (w1, wy) € P such that ||(w,ws)|| =1

and
max J(twy, twn) <~ [ (2t On " (3.18)
X — - . .
t€[0,00) b n 2n 25

To prove this, we consider the sequence of functions {(Uy,Vj)} as defined in the proof of
Theorem 1.6 such that supp(Uy), supp(Vi;) C B,(0) and ||(Uy, Vi)|| = 1 for all k. So we claim
that there exists a k € N such that (3.18) is satisfied for wy = Uy and wy = V.

We proceed by contradiction, suppose this is not true then for all £ € N there exists a t; > 0
such that (3.18) does not holds i.e.

1 2n — 2\
max J(tU, Vi) = J(0xUs, teVi) = —M <<< n “) O‘_> >

te[0,00) 2n 2

Since J((tUy, tV},) — —o0 as t — oo uniformly in k therefore {t;} must be a bounded sequence
in R. Then from (3.1), ||Uk, Vk|| = 1 and monotonicity of M, we obtain

2n —p\ an T
<t 3.19
( 2n >2n— k (3-19)

Since 4 (J((tUy,tVi))li=t, = 0 and pr/k I3 Ay G (%)%_” then by using (3.17), for

plk |:c—y|“ -

k € N large enough we obtain

F(y, t Uk, 1.V
m(tp)ty = /Q </Q (y|$k_];|uk k)dy> (f1(z, tkUp, e Vi) te Ur + fo(@, txUg, t Vi ) tx Vi) de

F(y, tp U, t1. Vi
2/ </ (v, teUg, t k)dy> (f1(z, t, Uk, tx Vi) tx U + fo(x, tp Uk, ti Vi )t Vi ) dex.
Bp/k Bp/k

|z — yl~

n n tﬁ (log k) dxdy
>ew |t () ) [ o
w;;:i Bpsk /By y

n

q(cinTl LT ) T
T —(2n—p)
R =)
> C,u,,nk

“n—1

n

Hence by using the fact that (chl + cQ"Tl) = 2,, t is bounded, ¢ > 2 and (3.19), we arrive
at a contradiction by taking k£ large enough. O

Proof of Theorem 1.8:
Let {(ug,v)} denotes a Palais Smale sequence at the mountain pass critical level I*. Then by
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Lemma 3.2 there exists a ug, vy € VVO1 () such that up to a subsequence uj — ug, vy — v
weakly in VVO1 "(Q) as k — oo. We prove our main result in several steps.

Step 1: Positivity of ug, vg.
If ug = vg = 0 (or either one of them) then using Lemma 3.4, we infer that

F
/ </ Mdy) F(z,ug,vg)dz — 0 as k — oo
Q Q

|z — yl~

and which further gives that limy_oo J (ug, vg) = = limy_yee M (||(ug, vg)||") = I*. Now in the
light of Lemma 3.5 and monotonicity of M, we obtain

2n n Qi
JE— R n—1 < —
2n_ﬂ”(“k o) || 5,

for large enough k. Now, this implies that sup, fQ fi(z,ug, vi)4dx < +oo for some g > 2nﬁ“,
i = 1,2. Along with (3.2), Theorem 1.4, the Hardy-Littlewood-Sobolev inequality and the
Vitali’s convergence theorem, we also obtain

/ </ Mdy) (fl(:Eauk‘yUk:)uk + fg(iﬂ,uk,vk)l)k)dx — 0as k — .
Q Q

|z — yl~

Hence limg o0 (J'((ug, vg)), (ug,vr)) = 0 gives limg_ oo m(]| (ug, vi)||™)|| (ug, vk)||™ = 0. Now
from (m2), we obtain limg_, |[(ug,vg)||” = 0. Thus using Lemma 3.4, it must be that
limg o0 J(ug,vp) = 0 = I* which contradicts [* > 0. Thus ug,vg Z 0 and there exists a
constant T > 0 such that up to a subsequence ||ug||™ + ||vg]|” — Y™ as k — oco. Then from
Lemma 3.3 and Lemma 3.4, we get as k — oo,

/ </ Mdy>(fl(;p,uk,vk)go-I—fz(:E,Uk,Uk)T/))dx -
a\Ja |z—yl»
/Q</Q M@) (fi(z,ug,v0)e + falz, up,vo))dx

|z — y|~

and

m(Y") / ([Vuo|"2Vuo Ve + |Vug|" 2V Vibda

F(y,ug,v n
/ < |§_§,|u° )<f1<:s,uo,vo><,o+f2(x,uo,vo)w>d:c, for all ¢, ¢ € Wy ™ ().
(3.20)
In particular, taking ¢ = u; and ¢ = 0 (similarly ¢ = 0 and ¢ = vy) in (3.20) we get
m(Y™)||ug || = 0 (similarly m(Y™)|lv, || = 0) and together with assumption (m2) implies

uy =0 (v, =0) a.e. in Q. Therefore ug,v9 > 0 a.e. in Q.
From Theorem 1.4 and Holder inequality we get,

(/Q Mdy) (fi(z,uo,v0) + falw,ug,vo))dx € LI(Q2)

|z —y|#

for 1 < ¢ < oco. By elliptic regularity results and strong maximum principle, we finally get
that ug,vg > 0 in Q.
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F(y,ug,v
Step 2: m(||ug, vol|™)|| (uo, vo) ||" 2/ (/ —‘(5 Oy,uo)dy> (f1(a, uo, vo)uo+fa(x, ug, vo)vo) di.
Q Q -
Suppose by contradiction

m({luo, vol™) || (w0, vo) I / </ F y,u%zo >(fl(:v,uo,vo)uo+f2(x,uo,vo)vo)d$

which implies that (J'(ug,vo), (ug,v0)) < 0. For ¢ > 0 small enough, using (f3) and (f5) we
have that
<J (t’u,o,t?]() UO,U0)> > mot" 1HU(),U()Hn

J1(y, tuo, tvo)tuo + fa(w, tug, vo tUo
(/ = y|“( ) (f1(z, tuo, tvo)uo + f2(x,uo, vo)vo) da

27+ / (/ ((ug + vg)uo + (ug + vg)vo)
Q Q

2n |z — y|#

> mot"lug, vo|" — d@/) ((ug +vg)uo + (ug + vg )vo) da

v

0.

Thus there exists a t, € (0,1) such that (J'(t.ug, t«vo), (ug,vo)) = 0 i.e. (tiug,tsvg) € N. So
using Lemma 3.5, (m3) and (f3) we get

1
* < ** < J((t*uO,t*Uo)) == J(t*’LL(],t*’U(]) — %<J/(t*uO,t*U0), (UO,U0)>

M(|[tsuo, tovo||?) 1 F(y, toug, t
— (H Uo UOH ) o _/ </ (y uo UO)dy) F(x,t*uo,t*vo)dx
Q Q

n 2 |z =yl

1
= 5om[lteuo, tevol[") | (Exuo, tevo) |

2n
1 F(y, tiug, tyv
4+ / Mdy (fi(z, tyug, tvo)tiug + fa(x, tiug, tevg)de
2n o |lz—yl
(HUO,UOH") 1 n n
<— - %W(H(UOWO)H )M (uo,vo)|
1 F(y, tyug, tev
- _/ (/ e O)dy> (f1(2, tuo, tovo)tsuo + f2(2, teuo, tavo) — nF (2, tauo, tvo))dx
2n Jo\Jo |z —yl»
M(||uo, voll"™)
< —7 o n n
< - znm(Huo,UOH Mlwo, vol|
1 F
+ o A </Q %Ch& (f1(, ug, vo)uo + fa(x,uo,vo) — nF(z,up,vo))dz

M (||wg, vg || 1 n
< liminf (M Ll v 17 s o) |
k—o0 2n

< F y7ukavk

’x — y’” > (fl(:Evukv,Uk)uk + f2(x7ukvvk) - nF(ﬂZ‘,Uk,’L)k))dZE>

o e e
= hlglcgf <J(uk,vk) — %(J (wk, vg), (Ukavk») =17

This gives a contradiction and completes the proof of Step 2. Similar arguments follows for
the degenerate case also using (m3).

Step 3: J(ug,vp) = I*.
Using the weakly lower semicontinuity of norms in limy_, o J(ug, vx) = I* and Lemma 3.4 we
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obtain J(ug,vg) < I*. If J(ug,vg) < I* then it must be limg_,oo M (||ug, vi||™) > M (||uo, vol|™)-
Then continuity and motonicity of M implies Y™ > ||ug, vo||" and

M(T")zn( /< Fly,uo, %) , >F(a:,u0,v0)da:>. (3.21)

CJr -y

Define the sequence of functions

(i, 5 ) < Uk Uk )
kyVk) —
’ ks, vil|” ||, vi|

such that ||ag, 0| = 1 and @y, 0p — (to, o) = (42,%2) weakly in P and [lug,vo|| < Y. From

Theorem 1.5, we have that

Sup/ exp (p(|ﬂk|# + |z7k|n7_i1)> dr < +oo, for 1 <p < dn —.  (3.22)
0 1

kel 2n(1 = [[tio, Do) =T

Then from (m3), Claim (1) and Lemma 3.5 we obtain

M(HUOWOH") ~ m([[uo, vol[")[[uo, vo["
2n

F(
</ y7uz‘j}"0 > (fl(ﬂf,U(),’U(])U() —|—f2(l’,’LLO,U0)'U(] —’I’LF(JL‘,UO,UO))dlE > 0.

J(UO,U())

and from (3.21) we get

n—1
M(Y") = nl* —nJ(ug,vo) + M(||ug,vol|™) < M <<<2n2; M> %> ) + M (|[uo, vol|"™)

which further implies together with (m1) that

oL (o))
1 — ||ag, vo|™ 2n 25

Thus for k£ € N large enough it is possible b > 1 but close to 1 such that

2
Db g, vk 7T < n

-~ 1
2n—p 2,,(1 — ||dio, To|™) *=

Therefore from (3.22) we conclude that

/ 2n
ex

(] et iy ) o e+ ot v =
/ </ M@) (f1(z,up,vo)ug + fo(x,up,vo)voda.
o \Ja

|z —y|#

bl + o) < € (3.23)

and
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This implies (ug, vi) — (ug, vp) strongly in P and hence J(ug, vg) = I* which is a contradiction.
Hence, J(ug,vo) = I* = limg_y00 J(ug, vg) and ||(ug,vg)|| — Y implies T = ||(uo,vo)||. Then
finally we have

m(|Juo, vo||™) </ ]Vuo\"_QVuOV(bda:—i—/ \Vvo]"_2Vvovwda:>
Q Q

— F(‘TaanvO)
= [ () (hovo ot ot s

for all ¢, € I/VO1 (). This completes the proof. O

4 Extensions and relative problems

The results of this paper can be extended in various directions. Let us mention here some
obvious generalizations:

1: The class of system (KCS) can be extended to the following fractional Kirchhoff-Choquard
system involving singular weights:

n/s
_m / / J D Gy st < Fly,u,v) dy) h@uv) g
n Jrn !w—y! " a lyl*lz —y|# ||

F n/s
(F) —-m / / 2 y)l dxdy n/s < Fly,u,v) dy) fafz, u, v) in Q,
n Jrn !w—y! "  lyl*fx —yl» ||

=0 in R"\ Q,

where (—A)fl/s is the n/s fractional Laplace operator, s € (0,1), n > 1, p € (0,n),0 < a <
min{%,n — p}, @ C R™ is a smooth bounded domain, m : R* — R* and F': @ x R* - R is

a continous functions where F' behaves like exp(|u|ﬁ + |v|ﬁ) as |ul, |v| — oc.

We conjecture that the following Moser-Trudinger inequality holds in case fractional Sobolev
space (counterpart of Theorem 1.4): Define £ := Xy x X endowed with the norm

o)l = (luls + )"

where
Xo = {u e W$(R") : u = 0 in R\ Q}

endowed with the norm

n n/s
ul\r) —u s
Jullx, = / lufe) ~ uly)]* (Qn” dxdy
R2n\ (Qx Q)¢ |z —y

Theorem 4.1. For (u,v) € £, n/s > 2 and Q C R™ is a smooth bounded domain, we have

/ exp (H (!u\% + \v\%)) dx < o0
Q
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for any 11 > 0. Moreover,

sup / exp (H (\u!n%s + ]fu]n7_i8>) dx < 0o, provided II < % (4.1)
Q

[l(u,0)[l =1 n,s

w (05 V7
o \TQ)zemn ) 7 2

*
A s

n—2s
where oy, s = = 2 n-s . Furthermore if II > , then there exists

2n,s

a pair (u,v) € L with ||(u,v)||z =1 such that the supremum in (4.1) is infinite.
Using Theorem 4.1, doubly weighted Hardy-Littlewood-Sobolev inequality, we can prove the
existence and multiplicity of solutions for the problem (F) (see [5, 6]).

2: We infer that similiar methods can be used to the following Kirchhoff-Choquard system
for the Polyharmonic operator:

( F
—M(/ V" u[2dz) AT = (/ (v v, ) dy> flzwv) g
Q a lyl*z —y[~ ||
F(y, u,v) fo(z,u,v) ,
—M/va2demv:</ - dy> 2 v>0 in Q,
(g MU Vel o Ple -y ™) Tl
uv=Vu=---=V"ly=0 on 0f),
{ v=Vo=---=V"ly=0 on 0f),

where n = 2m, p € (0,n),0 < o < min{Z,n — pu}, Q@ C R™ is a smooth bounded domain,
M :RT = R* and F : @ xR? — R is a continous functions where F behaves like exp(|u| ™ +
|v|n=m) as |ul, |v| = o0o. The vectorial polyharmonic operator A"} is defined as

m

m

AT VAN (VA PV AT )} i mo= 25— 1
A (| AT w2 Adu) if m = 2j.

The symbol V™u denotes the m'™" order gradient of u and is defined as,

gm VAM=D/2q if m is odd;
u =
A%y, if m is even,

where A and V denotes the usual Laplacian and gradient operator respectively and also
V™u. V™ denotes the product of two vectors when m is odd and product of two scalars when
m is even.

Using Theorems 1.4, 1.5 and extension of Theorems 1.6 and 1.7 (which is an open question),
we can study the system of Kirchhoff-Choquard equation for the Polyharmonic operator.

3: Another important open question is the Adams-Moser-Trundinger inequalities in Cartesian
product of Sobolev space with unbounded domain (or in R™).
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