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Abstract

3-D object recognition involves using image-computable features to identify 3-D object. A

single view of a 3-D object may not contain sufficient features to recognize it unambigu-

ously. One needs to plan different views around the given object in order to recognize it.

Such a task involves an active sensor – one whose parameters (external and/or internal)

can be changed in a purposive manner. In this paper, we review two important applications

of an active sensor. We first survey important approaches to active 3-D object recognition.

Next, we review existing approaches towards another important application of an active

sensor namely, that of scene analysis and interpretation.

Key words: Active Vision, Computer Vision, Next View Planning, 3-D Object

Recognition, Scene interpretation

1 Introduction

3-D object recognition is the process of identifying 3-D objects from their images

by comparing image-based features, or image-computable representations with a

stored representation of the object. (For detailed surveys of 3-D object recognition

and related issues, see [1], [2]) Various factors affect the strategy used for recogni-

tion, such as the type of the sensor, the viewing transformations, the type of object,

and the object representation scheme. Sensor output could be 3-D range images,
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or 2-D intensity images. 3-D range images can be obtained from the output of a

light stripe range finder, for example. 2-D images may be obtained from various

means such as CCD cameras, infra-red devices, X-ray images, or from other de-

vices operating on different ranges of the electromagnetic spectrum. 3-D objects

may be classified as rigid, articulated, or deformable. In this survey, we primarily

concentrate on 2-D intensity images taken with cameras. This paper is restricted to

the recognition of rigid 3-D objects and analysis of 3-D scenes.

3-D object recognition from 2-D intensity images is a difficult task, primarily be-

cause of the inherent loss of information between a 3-D object and its 2-D image.

The appearance of the object depends on factors such as the viewing geometry, il-

lumination and viewpoint. The presence of noise in the feature detection process

increases the difficulty of the recognition problem. The use of multiple views, in-

stead of a single view, can make the 3-D object recognition problem more tractable.

1.1 The Need for Multiple Views

Most model-based 3-D object recognition systems consider the problem of recog-

nizing objects from the image of a single view of an object ([1], [2], [3], [4]). Due

to the inherent loss of information in the 3-D to 2-D imaging process, one needs an

effective representation of properties (geometric, photometric, etc.) of objects from

images which are invariant to the view point, and should be computable from im-

age information. Invariants may be colour-based (e.g., [5]), photometric (e.g., [6])

or geometric (e.g., [3]).

Burns, Weiss and Riseman prove a theorem in [7] that geometric invariants cannot

be computed for a set of 3-D points in general position, from a single image. In-

variants can only be computed for a constrained set of 3-D points. One can impose

constraints on the nature of objects to compute invariants for recognition [8] – this

severely restricts the applicability of the recognition system to only specific classes

of objects e.g., canal surfaces [9], [10], rotational symmetry [8], [11], [3], repeated

structures (bilateral symmetry, translational repetition) [3], [12], [13]. While in-

variants may be important for recognizing some views of an object, they cannot

characterize all its views – except in a few specific cases, as mentioned above. We

often need to recognize 3-D objects which because of their inherent asymmetry,

cannot be completely characterized by an invariant computed from a single view.

For example, certain self-occluded features of an object can become visible if we

change the viewpoint. In order to use multiple views for an object recognition task,

one needs to maintain a relationship between different views of an object.

A single view may not contain sufficient features to recognize an object unambigu-

ously. A further complication arises if two or more objects have a view in common

with respect to a feature set. Such objects may be distinguished only through a se-
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(a) (b)

Fig. 1. (a) The given complete view of an object, and (b) the objects which this view could

correspond to

quence of views. As a simple example, let us consider a set of 3-D objects with the

number of horizontal and vertical lines, as features. Figure 1(a) shows a given view.

On the basis of the chosen features, this view could correspond to any of the objects

in Figure 1(b). In other words, with each of the objects of Figure 1(b), it is possible

to obtain a view in which we would detect only two horizontal and two vertical

lines. Hence, it is not possible to determine which object the given view corre-

sponds to, given only the single view in Figure 1(a). In fact, two objects may have

all views in common with respect to a given feature set, and may be distinguished

only through a sequence of views. In [14], the authors cite a simple example of a

sedan and a station wagon having indistinguishable front ends, but different side

views.

A further complication arises when in an image, we do not have a complete view of

an object. Figure 2(a) shows such an example. Such a view could have come from

any of the three models, different views of which are shown in Figure 2(b), (c)

and (d), respectively. Again, the identity of object cannot be uniquely determined

from this one view. Further, even if the identity of the object were known, the same

configuration of parts could occur at more than one place in the object. In that case,

it is not possible to know the exact pose of the camera with respect to the object.

There may be another motivation for using multiple views in a recognition task. In

recognizing 3-D objects from a single view, recognition systems often use complex

feature sets ([2]). Complex features such as 3-D projective invariants have been

proposed only for special cases so far (e.g., [3]). In many cases, it may be possible

to achieve the same, incurring less error and smaller processing cost using a sim-

pler feature set and suitably planning multiple observations. A simple feature set is

applicable for a larger class of objects than a model base-specific complex feature

set.

Active vision involves using a sensor to take multiple views, in a purposive manner.

We discuss this in detail, in the following section.
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(a)

(b) (c) (d)

Fig. 2. (a) The given view of an object: only a portion of it is visible. This could have come

from any of the models, different views of which are shown in (b), (c) and (d), respectively

1.2 Active Vision

An active sensor may be defined as follows:

Active Sensor An active sensor is one that can be purposively controlled. An Ac-

tive Vision system has the ability to control the sensor parameters such as the

orientation with respect to an object. Thus, vision-guided feedback may be used

to position such a sensor. Such a system has other parameters that may be purpo-

sively varied, such as the focus, zoom, aperture and vergence (in two-camera sys-

tem). Some specialized sensors have anthropomorphic properties, such as foveal

attention mechanisms.
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Some important papers proposing and elucidating the concepts of active vision and

related paradigms, are the work of Aloimonos et al. [15]; Bajcsy et al. [16], [17];

Ballard [18]; Ballard and Brown [19], and Crowley [20]. A collection of repre-

sentative papers in the area is [21]. Swain and Stricker [22] survey a wide gamut

of vision tasks which may be performed with an active sensor. They mention that

active vision broadly encompasses attention, selective sensing in space, resolution

and time. This may be achieved by modifying physical camera parameters, or the

way the data from the camera is processed.

The output of a camera usually contains a huge amount of data. Hence, an atten-

tion mechanism may use an active sensor for signal selection in space, velocity and

distance (e.g., foveal processing, tracking an object, and focusing on regions of in-

terest). Gaze control is a possible application – active manipulation of the imaging

system in order to acquire images that are directly suited to the tasks being per-

formed. Gaze control could be used for low level vision (e.g., Murray et al. [23],

Crowley et al. [24]), as well as for high level vision (e.g., Rimey and Brown [25]).

Thus, an active mechanism could be used to overcome a limited field of view of a

camera. A related application is next view planning. Cost and complexity consider-

ations often require a system to be focused on restricted regions of a scene. Further,

the current view available to a system may not even contain sufficient information

for the vision task. Thus, deciding on where to look next may be task driven, fea-

ture driven, or context driven. Thus, a sequence of such sensing operations may be

required. Sequential processing has the additional advantage of efficiency through

directed analysis – results of each step guide subsequent steps. Object recognition

and scene analysis are two example of such a vision task. Another example of an

active vision task is eye-hand coordination [26].

Tarabanis, Allen and Tsai [27] survey the field of sensor planning for vision tasks.

They define the problem as follows: Given information about the environment (e.g.,

the object and the sensors), and information about the vision task (e.g., detection

of certain object features, object recognition, scene analysis), the task at hand is to

develop strategies to automatically determine parameter values in order to achieve

the task, to a required degree of satisfaction. They classify problems into three

classes:

(1) object feature detection

(2) object recognition and localization, and

(3) scene reconstruction.

We discuss these issues in the following sections.

1.2.1 Object Feature Detection

Object feature detection seeks to automatically determine vision sensor parame-

ter values for which particular features satisfy particular constraints when imaged.
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These features belong to a known object in a known pose [27]. In addition to the

general survey on sensor planning, the authors lay specific emphasis on systems for

object feature detection systems. (A separate paper [28] presents the authors’ own

MVP system in detail.) A related topic is planning for complete sensor coverage of

3-D objects. A recent work in the area is that of Roberts and Marshall [29], who

present a viewpoint selection scheme for complete surface coverage of 3-D objects.

Some important earlier work in the area include those of Cowan and Kovesi [30],

Tarbox and Gottschlich [31] and Mason and Grun [32].

1.2.2 Object Recognition and Localization, and Scene Reconstruction

Given an active sensor and a set of feature detectors, the fundamental problems

involved in a multiple view-based recognition system are

� the design of a suitable modeling and representation scheme, and

� an identification mechanism which can exploit properties of the sensing process

and the modeling scheme.

Based on the representation scheme and the scope or nature of the recognition

strategy, we classify different multi-view recognition systems into two categories:

(1) Object recognition systems, and

(2) Systems for scene analysis

In the first class of systems, we consider systems whose aim is to primarily rec-

ognize a given object and its pose. Such systems typically assume that the entire

object is visible in a given view. In the second class of scene analysis systems, we

consider systems whose aim is to explore and and analyze a given scene. Such a

scene may contain one or more objects, known or unknown. In such cases, the en-

tire scene to be analyzed may not be visible in one view – the sensor may ‘see’ only

a part of it at a time. While recognition may not be a primary aim of such systems,

they may involve recognition of some components of a scene. We describe these

two categories in detail in Sections 2 and 4, respectively.

2 Active Object Recognition Systems

An active object recognition system uses multiple views of 3-D objects for recogni-

tion in a purposive fashion. Based upon specialized representation scheme linking

multiple views of 3-D objects, different recognition schemes have been formulated

for active object recognition.
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2.1 Representation Schemes

Object representation schemes used for model-based 3-D object recognition sys-

tems include ([33]): wire-frame representations, constructive solid geometry-based

schemes (CSG), spatial-occupancy representations (e.g., voxels, octrees), surface

boundary representations, generalized cone or sweep representation, skeleton rep-

resentations, and aspect graphs. Appearance-based approaches (e.g., [34]) to object

recognition use appearance rather than shape, for matching. However, only a few

of the above approaches have been used in multi-view object recognition systems.

While wire-frame models have an inherent ambiguity in interpretation, feature ex-

traction is difficult in volume or surface-based approaches. Skeleton representations

and generalized cones are applicable for recognition of only a specific class of ob-

jects. Representation schemes can also be characterized on the basis of whether

they represent the object as a whole, or model it in terms of its parts.

2.1.1 View Based Representation

Most active object recognition systems consider either of the following three rep-

resentation schemes, or their variants:

� Appearance-based parametric eigenspaces

� Multidimensional Receptive Field Histograms

� Aspect graphs

These three are view-based – they encode information about different 2-D views

of a 3-D object. Breuel [35] describes simulations and experiments on real images

to suggest view based recognition as a robust and simple alternative to 3-D shape-

based recognition methods. In what follows, we describe the above three view-

based representation schemes. We briefly point out their use in active recognition

systems – Section 2.3 describes them in detail.

Appearance-Based Parametric Eigenspaces

Murase and Nayar [34] propose the idea of appearance-based methods using para-

metric eigenspaces. A basic observation is that the shape and reflectance are in-

trinsic properties, which are constant for a rigid object. The authors propose a

scheme to automatically learn 3-D objects from their appearance in 2-D images.

An important advantage of this method is the ability to handle the combined effects

of shape, pose, reflection properties and illumination. Furthermore, it is possible

to learn appearance-based object representations off-line. For systems using such

a representation, the recognition problem becomes one of appearance matching,

rather than shape matching.
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Appearance-based methods require a large number of images of the object – with

different poses, and illumination conditions. The images of the objects are normal-

ized with respect to size and illumination conditions. Both in the pose and illu-

mination space, consecutive images are correlated to a large degree. Each normal-

ized image is written as a column vector in raster scan order. Next, the normalized

images are stacked together , and the covariance matrix is calculated. The first �

eigenvectors are used to represent the stacked matrix of images [34]. In the recog-

nition phase, the image vector is projected to the eigenspace. The object which

has a minimum distance between the projected image vector and its manifold, is

considered to be present. The work of Borotschnig et al. [36] is an example of

the use of parametric appearance-based information for active object recognition

(Section 2.3).

Multidimensional Receptive Field Histograms

Multidimensional Receptive Field Histograms [37] are based on the idea that lo-

cal structure is an important component of the appearance of an object. The local

structure can be characterized by a vector of local features measured by local op-

erators such as Gaussian derivatives or Gabor filters. The authors acquire this in-

formation from sample training images. This technique represents appearances of

objects by the joint statistics of such local neighbourhood operators. Multidimen-

sional receptive field histograms approximate the probability density function for

local appearance. Their selection of features is not restricted to a particular family

of objects, nor rely on a particular set of features. The features should be invari-

ant (with respect to certain transformations), equivariant (as a function of a certain

transinformation), and robust (change slowly in the presence of certain transforma-

tions). In [38] Schiele and Crowley present an active recognition system based on

multidimensional receptive field histograms (Section 2.3).

Aspect Graphs

Aspect graphs are a popular representation tool for 3-D object recognition systems.

Koenderink and van Doorn [39] define aspects as topologically equivalent classes

of object appearances. Chakravarty and Freeman [40] adopt a similar approach in

their definition of the ‘Characteristic Views’, and their uses in object recognition.

Since sensors may be of different types (geometric, photometric, etc.), Ikeuchi and

co-workers generalize this definition – Object appearances may be grouped into

equivalence classes with respect to a feature set. These equivalence classes are as-

pects [41]. Thus, an aspect is a collection of contiguous sites in viewpoint space

which correspond to the same set of features. We define an aspect graph as follows:

Aspect Graph An aspect graph consists of nodes which correspond to aspects.

Links between nodes represent transitions from one aspect to another. A link is

8



often referred to as an accidental view, or a visual event [42].

Aspect graph-based and related representations include [40], [43], [44], [45], [46],

[41], [47], [48], [49], [50], [51], [52], [53], [54]. Many active object recongition

schemes are based on aspect graphs [55], [56], [14], [57], [58] (Section 2.3 de-

scribes these in detail). The aspect graph-based approach is more general than the

other two approaches in that appearance-based information may be used to con-

struct an aspect graph.

2.1.2 Part-Based Representations

Some object recognition systems consider the representation of an object in terms

of its parts. Existing part-based recognition systems typically consider the object

to be wholly composed of identifiable parts. Here, we review two part-based ap-

proaches. The first is based on volumetric primitives, and the second on appearance-

based parts. Existing part-based recognition systems usually use information from

only a single view. The works of Dickinson et al. [56], and our work [59] are ex-

amples of active recognition systems using a part-based representation. Here, we

look at two part-based representations namely, geons and appearance-based parts:

Geons

Biederman’s Recognition by Components theory [60] proposes the concept of vol-

umetric primitives, called geons (short for ‘geometric ions’). The Cartesian prod-

uct of contractive shape properties give rise to this set of volumetric primitives.

Bergevin and Levine [61], [62] propose methods of automatically extracting geons

from relatively perfect 2-D line drawings. Single view-based recognition systems

such as [62], [44] and [45] use geons as representation tools. In [62], Bergevin and

Levine propose a system for generic object recognition from a single line drawing

of an object, by parts. Dickinson and co-workers [44], [45] use an augmented aspect

hierarchy using geons as the basic volumetric primitives. They use this augmented

aspect hierarchy for active 3-D object recognition in [56].

Appearance-based parts

Another approach to part-based representation is that of Huang, Camps and Ka-

nungo [63], [64]. The authors define appearance-based parts as “polynomial sur-

faces approximating closed, non-overlapping image regions that optimally partition

the image in a minimum description length (MDL) sense.” Their single view-based

recognition systems consider the advantages of appearance-based representations.

Additionally, the idea of recognizing parts and not the whole object gives the sys-

tem robustness to occlusion and segmentation variations.
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An important assumption in the above two schemes is that the object is partitioned

into a set of recognizable parts. The part-based recognition system [59] considers

a more general case. The paper also consider an object to be composed of a set

of identifiable parts. However, the authors do not assume the entire object to be

partitioned into a set of identifiable parts – there may be portions of the object which

do not have any detectable features, with respect to the set of feature detectors being

used. Section 2.3 briefly outlines this scheme.

2.2 Methods for Representing Uncertainty

Uncertainty in an object recognition task can be with respect to interpretation of

a view of the object. It could have come from more than one object, and more

than one part of the same object. Factors such as noise and non-adaptive thresholds

may corrupt the output of a feature detector. In such a case, a feature detector may

erroneously report a different feature from what is ‘actually’ present.

Common methods for representing uncertainty are probability theory, the Dempster-

Shafer theory [65], [66], and fuzzy logic [67]. A representation scheme based on

probability theory is a Bayes Net [68]. (Bayes nets, and their variants are also

known as Belief networks, Bayesian networks, and probabilistic networks.) How-

ever, a Bayes net is a far more general AI-based representation scheme (as against

the above schemes specifically used for modeling 3-D objects). A Bayes net is

a graph which represents the joint probability distribution of a set of variables.

Nodes in the graph represent variables, and directed links represent conditional

probabilities. The Bayes rule is used for updating the probabilities of nodes hav-

ing a particular label, given that successor nodes have particular labels. Dickinson

et al. [56] use a variant of a Bayes net for their recognition system (Rimey and

Brown [25]. use Bayes nets for scene analysis), while Hutchinson and Kak [55] use

the Dempster-Shafer theory to represent uncertainty. Some scene analysis systems

use fuzzy logic (e.g., [69]).

In the following section, we discuss different characteristics about uncertainty rep-

resentation schemes, in conjunction with the recognition strategies.

2.3 Recognition Strategies

We now present recognition strategies for some important active 3-D object recog-

nition schemes. We classify these on the basis of the next view planning strategy:
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(1) Systems which take the next view to minimize an ambiguity function, and

(2) Systems incorporating explicit planning algorithms

We discuss different schemes as follows. All except the last three (described in de-

tail, below) belong to the first category. Our own work on active 3-D object recog-

nition uses a planning scheme in order to take the next view [57], [58], [59] (brief

description in Sections 2.3 and 2.3).

Hutchinson and Kak

In their work on planning sensing strategies in a robot work cell with multi-sensor

capabilities, Hutchinson and Kak [55] use an aspect graph to represent informa-

tion about the objects in their model base. They present a system for dynamically

planning sensing strategies, based on the current best estimate of the world. They

automatically propose a sensing operation, and then determine the maximum am-

biguity which would remain if the operation were applied. The system then selects

the operation which minimizes the remaining ambiguity. They use the Dempster-

Shafer theory to combine evidence and analyze proposed operations.

Liu and Tsai

Liu and Tsai [70] describe a multiple view-based 3-D object recognition system.

Their setup has two cameras and a turntable. They use silhouettes as features. The

system first reduces ambiguity by taking images from above the turntable to nor-

malize the shape of the top view, position the object centroid, and align the principal

axis of the object. The system then takes a side view, and analyzes its features. Then

the object is rotated by ���. This system repeats the above process, till the object is

recognized.

Callari and Ferrie

Callari and Ferrie [71] base their active object recognition system on mode-based

shape, pose and position reconstructions from range data. They estimate Bayesian

probabilities with neural networks. Their system takes the next view based on the

move which minimizes the expected ambiguity in terms of Shannon entropy.

Schiele and Crowley

Schiele and Crowley [38] develop an analogy between object recognition and the

transmission of information through a channel based on the statistical represen-

tation of 2-D object appearances. They use multidimensional receptive field his-

tograms. Transinformation enables the determination of the most discriminative
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Verification Steps recognition number of errors

0 98.22% 64

1 99.08% 33

2 99.97% 1

Table 1

Some experimental results for the active recognition system of Schiele and Crowley [38]

on the Columbia image database of 100 3-D objects (Table 1, page 254 in the paper).

Fig. 3. The augmented aspect hierarchy: This is Figure 2 in [56], page 243.

viewpoints. The proposed strategy moves the camera to the most discriminant view-

point of the hypothesized object. The authors show results of using their recognition

strategy on the Columbia database of 100 3-D objects. Table 1 summarizes some

of the results.

Dickinson et al.

Dickinson and co-workers [56] present an active object recognition scheme which

integrates attention and viewpoint control. Their representation scheme is similar

to that of Biederman [60]. The system uses an augmented aspect hierarchy as their

data structure (Figure 3). Aspects are used to model the (typically small) set of

volumetric part-classes from which each object in the database is constructed. The

augmented aspect hierarchy considers relations between boundary groups (repre-

senting all subsets of contours bounding the faces), the faces, the aspects, and fi-

nally, the volumetric primitives themselves. The entities at each level are linked

with one another. Each link is associated with a conditional probability.

Dickinson et al. present a case for using regions. They use conditional probabilities

captured in the augmented aspect hierarchy to define a measure of average inferenc-

ing uncertainty. On the basis of this, they conclude that the value of this parameter

for faces is less than that for boundary groups. It is pointed out that the advantage

would be realizable if the cost of extracting the features corresponding to the two

are comparable. Their attention mechanism exploits the augmented aspect hierar-
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Fig. 4. Moving the sensor to disambiguate volumes 1 (block) and 5 (cylinder) in the system

of Dickinson et al.: This is Figure 16 in [56], page 257

chy to map target objects down to target faces. Target faces are in turn, compared to

image faces. In selecting which recovered face to focus attention on, they use a de-

cision theoretic approach using a Bayesian framework. They use a structure known

as the aspect prediction graph to drive the sensor to a new position from which an

object’s part can be disambiguated. Figure 4 shows results of moving the camera to

disambiguate between two objects.

Borotschnig et al.

Borotschnig et al. [36] present an active 3-D object recognition system that uses

appearance-based information. They extend the idea of the off-line system of Murase

and Nayar [34] to an on-line case. They use a parametric eigenspace, and augment

it with probability distributions – to capture possible variations in the input images

due to errors. Their system chooses as the next view a move, which minimizes the

average entropy.

Gremban and Ikeuchi

Gremban and Ikeuchi [14] present a scheme for planning multiple views in an ob-

ject recognition task. They use Aspect-Resolution Trees built on the basis of aspect

diagrams for planning multiple observations for object recognition. The authors

show results for a vision-based sensor, and a haptic sensor, and give examples of

recognition of objects based on sensors to detect specularities and their properties.

These specularities determine the aspects of the object. They consider this to be

a challenging domain, since a single image of a specular object yields very little
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Sampling

Interval �
�

�
�

�
�

�
�

�
�

��
�

Total tests 100 100 100 100 100 100

Correct 99 97 69 46 26 34

Incorrect 1 3 11 24 12 9

Unresolvable 0 0 20 30 62 57

Table 2

Aspect resolution results for the system of Gremban and Ikeuchi [14]: Table 2, page 66 in

the paper

Fig. 5. Aircraft models: one of the sets of models used for experimentation with our first

system.

information about the overall object shape (specularity being a local phenomenon).

Further, many different object poses can yield the same pattern of specularities. The

authors show recognition results with three objects. Table 2 shows some recogni-

tion (aspect resolution) results for an object - a stylized jet.

Aspect Graph-based Modeling and Recognition using Noisy Sensors

We propose a new on-line recognition scheme based on next view planning for

the identification of an isolated 3-D object using a set of noisy feature detectors.

We use our aspect graph construction scheme [54] to construct an aspect graph,

given noisy feature data. The scheme uses a probabilistic reasoning framework

for recognition and planning. Our hierarchical knowledge representation scheme

encodes feature-based information about objects as well as the uncertainty in the

recognition process. This is used both in the probability calculations as well as in

planning the next view. The planning process is reactive – the system uses both the

past history as well as the current observation to plan a move which best disam-

biguates between competing hypotheses about the identity of the object. Results

clearly demonstrate the effectiveness of our strategy for a reasonably complex ex-

perimental set. Figure 5 shows a data set with fairly complex shapes, with a large

degree of interpretation ambiguity corresponding to a view. We use very simple

features: the number of horizontal and vertical lines in an image of the object, and
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Fig. 6. Some experiments with our first system on a set of aircraft models, with the same

initial view with respect to the feature set used. The numbers above the arrows denote the

number of turntable steps. (The figure in parenthesis shows an example of recovery from

feature detection errors)

the number of circles. Figure 6 shows examples of experiments with objects from

the aircraft model base. The initial view in each of these examples has the same fea-

tures: 3 horizontal and vertical lines each, and 2 circles. In Figure 6(b), the shadow

of the left wing on the fuselage of the aircraft, the feature detector detects 4 vertical

lines instead of 3, the correct number. Our error modeling and correction scheme

enables the system to recover from this feature detection error. Papers [57] and [58]

describe different stages of the work, and its different aspects.

Recognizing Large 3-D Objects through Next View Planning using Inner Camera

Invariants

Our second system uses a new on-line scheme for the recognition and pose estima-

tion of a large isolated 3-D object, which may not entirely fit in a camera’s field of

view. We consider an uncalibrated projective camera, and consider the case when

the internal parameters of the camera may be varied either unintentionally, or on

purpose. We use a new class of invariants for complete 3-D Euclidean pose estima-

tion – Inner Camera Invariants, image-computable functions which are invariant to

the internal parameters of a camera [72]. We propose a part-based knowledge repre-

15



�

� � �

(a) �� (b) �� (c)

The camera progressively zooms out

Fig. 7. For the same first two views, we progressively zoom-out the camera in three stages.

(a), (b) and (c) depict the three views which the camera sees, for the third view. This does

not affect the recognition system in any way – the system identifies the object and the

camera pose accurately in each case.

sentation scheme. We consider a very general definition of the word ‘part’ – A view

of an object contains 2-D or 3-D parts (which are detectable using 2-D or 3-D pro-

jective invariants, for example), and other ‘blank’ or ‘featureless’ regions (which

does not have features detectable by the feature detectors). Thus, according to our

formulation, an object is composed of parts, but is not partitioned into a collection

of parts. The scheme uses a probabilistic reasoning framework for recognition and

next view planning. We show results of successful recognition and pose estimation

even in cases of a high degree of interpretation ambiguity associated with the initial

view. We have experimented with a set of architectural models. Figure 2(a) shows

such an example. Such a view could have come from any of the three models, dif-

ferent views of which are shown in Figure 2(b), (c) and (d), respectively. Figure 7

shows an example of correct object recognition and pose estimation, in a case when

the internal parameters of the camera change – a zoom-out operation, in this case.

(Details in [59]).
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3 A Comparative Analysis of Active Object Recognition Systems

Active recognition systems have been proposed which can work with different as-

sumptions about the nature of the sensors and the environment, the degrees of free-

dom between the object and the sensor, and the object models themselves. We dis-

cuss the following issues with respect to different active 3-D object recognition

systems:

(1) Features used for modeling and view recognition

While many approaches such as those of Hutchinson and Kak [55] and Liu and

Tsai [70] use geometric features, the scheme of Gremban and Ikeuchi [14] is

independent of the features used. The latter present results with geometric and

photometric information. Our work on isolated 3-D object recognition through

next view planning [57], [58] is also independent of the specific features used

for modeling and view recognition. Appearance-based methods such as that

of Borotschnig et al. [36] use pixel information from an entire image. Dick-

inson et al. [56] use volumetric primitives, which are associated with a high

feature extraction cost. The same is true for the super-ellipsoids of Callari and

Ferrie [71].

(2) The system setup and viewing geometry

Existing systems such as those of Hutchinson and Kak [55], Liu and Tsai [70],

Callari and Ferrie [71], Dickinson et al. [56], Gremban and Ikeuchi [14], and

Borotschnig et al. [36] assume that the object completely fits into the cam-

era’s field of view. Borotschnig et al. [36] assume a single degree of free-

dom (hereafter, DOF) between the object and the sensor. While Gremban and

Ikeuchi [14] have experimented with such a case, they propose extensions

to higher degrees of freedom. Most multiple view-based approaches using

geometric features, implicitly or otherwise, assume the camera model to be

orthographic. While our work on aspect graph-based modeling and recogni-

tion [57], [58] assumes a 1-DOF case and an orthographic camera, the work

on part-based recognition of large 3-D objects considers the most general 6-

DOF case, and a commonly used projective camera model. The latter does not

assume that the object fits into the camera’s field of view. Additionally, it is

independent of the internal parameters of the camera.

(3) Efficient representation of knowledge about object models

The knowledge representation scheme should support an efficient mechanism

to generate hypotheses on the basis of the evidence received. It should also

play a role in optimally planning the next view. Dickinson et al. [56] use a

hierarchical representation scheme based on volumetric primitives. Due to the

non-hierarchical nature of Hutchinson and Kak’s system [55], many redun-

dant hypotheses are proposed, which have to be later removed through consis-

tency checks. In our work on aspect graph-based modeling and recognition,

the hierarchical knowledge representation scheme and probabilistic hypothe-

sis generation mechanism itself refines feature evidence through different lev-
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els – leading to simpler evidence propagation and less computational cost [57],

[58]. Borotschnig et al. [36] use a parametric eigenspace-based representation,

which is associated with a high storage and processing cost.

(4) Speed and efficiency of algorithms for both hypothesis generation and next

view planning

Hypothesis generation should be fast, and incur minimal error. The next view

planning strategy acts on basis of these hypotheses. In Hutchinson and Kak’s

system [55], the polynomial-time formulation overcomes the exponential time

complexity associated with assigning beliefs to all possible hypotheses. How-

ever, their system still has the overhead of intersection computation in creat-

ing common frames of discernment. Consistency checks have to be used to

remove the many redundant hypotheses produced earlier. Though Dickinson

et al. [56] use Bayes nets for hypothesis generation, their system incurs the

overhead of tracking the region of interest through successive frames.

(5) Nature of the next view planning strategy

The planning scheme should ensure adequate discriminatory ability between

views common to more than one object in the model base. The cost incurred in

this process should also be minimal. The system should, preferably be on-line

and reactive – the past and present inputs should guide the planning mecha-

nism at each stage. While schemes such as those of Borotschnig et al. [36]

and our systems [57], [58], [59] are on-line, that of Gremban and Ikeuchi [14]

is not. An off-line approach may not always be feasible, due to the combina-

torial nature of the problem. An on-line scheme has the additional capability

to react to unplanned situations, such as errors.

(6) Uncertainty handling capability of the hypothesis generation mechanism

Approaches such as those of Gremban and Ikeuchi [14], and Liu and Tsai [70]

are essentially deterministic. An uncertainty-handling mechanism makes the

system more robust and resistant to errors compared to a deterministic one.

Dickinson et al. [56], Borotschnig et al. [36] and our systems [57], [58], [59]

use Bayesian methods to handle uncertainty, while Hutchinson and Kak [55]

use the Dempster-Shafer theory. In the work of Callari and Ferrie [71], the

ambiguity in super ellipsoid-modeled objects is a function of the parameters

estimated, on the basis of which the next move is determined. Schiele and

Crowley [38] use a transinformation-based mechanism to propose the next

move.

4 Active Scene Analysis Systems

The aims and domains of scene analysis systems are extremely diverse – even

though active sensing and recognition usually form a common thread in each of

them. Given their diverse natures, systems for scene analysis generally use spe-

cialized schemes for knowledge representation. They use these in conjunction with
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the recognition and analysis strategies. In this section, we review some important

classes of scene analysis systems, and their information representation and control

schemes.

4.1 Next View Planning for Data Acquisition: Range Images

Maver and Bajcsy [73] present a strategy for next view planning which exploits

occlusion information. The system exploits characteristics of the sensing process,

to acquire yet-unknown 3-D information about the scene of interest. A related ap-

proach is that of Massios and Fisher [74]. The authors also use range images, and

propose a quality criterion. This quality criterion aims at obtaining views that im-

prove the overall range data quality of the imaged surfaces. Another recent ap-

proach is that of Garcı́a, Velázquez and Sappa [75]. They present a two stage algo-

rithm for determining the next view, using range images. The first stage applies a

voting scheme that considers occlusion edges. Most of the surfaces of the scene are

recovered this way. The second stage fills up the remaining holes through a scheme

based on visibility analysis.

A related intensity image-based approach is one of recovering the surface shape

with an active sensor. We discuss this in the following section.

4.2 Active Recovery of Surface Shape using Intensity Images

Kutulakos and Dyer [76] present an approach for recovering surface shape from an

occluding contour of an object, using an active sensor. They use the fact that if the

viewing direction is along a principal direction for a surface point whose projection

is on the contour, it is possible to recover the surface shape (curvature).

4.3 Scene Geometry Interpretation and Exploration

Whaite and Ferrie [77] present a system for the interpretation of scene geome-

try in the form of parametric volumetric models. They describe ambiguity as a

local probabilistic property of the misfit error surface in the parameter space of

super-ellipsoid models. They propose a technique that uses this information to plan

for the next view – which minimizes the ambiguity of subsequent interpretation.

Marchand and Chaumette [78] present an autonomous active vision system for 3-

D reconstruction of static scenes. They do not assume any prior knowledge of the

number, localization, and the dimension of the different objects in the given scene.

A controlled structure-from-motion method is used for reconstruction. This allows

an optimal estimation of parameters of geometrical primitives. They present two
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algorithms to ensure exploration of the scene. The first is an incremental recon-

struction algorithm based on the use of a prediction/verification scheme involving

decision theory and Bayes nets. The second algorithm is based on the computation

of new viewpoints for the complete reconstruction of the 3-D scene.

4.4 Systems for ‘Finding Waldo’: Incorporating Colour and Other Cues

Grimson and co-workers [79] present an attentive active visual system which inte-

grates visual cues to fixate candidate regions in which to recognize a target object.

The system combines colour and stereo cues to perform figure/ground separation.

The following section describes an important paradigm in visual search namely,

using intermediate objects.

4.5 Using Intermediate Objects to Enhance Visual Search

Wixson and Ballard [80] describe an active vision system that use intermediate ob-

jects to improve the efficiency of visual search. They show examples of trying to

search for an object using an active camera, whose internal and external parameters

can be varied, and which is also capable of foveal processing. They propose indirect

searches to be more efficient as compared to direct searches for an object, in two

cases. The first is when intermediate objects can be recognized at low resolutions

and hence found with little extra overhead. The second is when they significantly

restrict the area that must be searched for the target. Indirect searches use spatial

relationships between objects to repeatedly look for intermediate objects, and look

for the target object in the restricted region specified by these relationships. The

authors present a mathematical model of search efficiency that identifies the factors

affecting efficiency and can be used to predict their effects. They report that in typ-

ical situations, indirect search provides up to about an 8-fold increase in efficiency.

4.6 Selective Attention for Scene Analysis

Rimey and Brown [25] suggest the use of Bayes Nets for scene analysis through

selective attention. They mention that the efficiency of a selective vision system

comes from processing the scene only where necessary, to the level of detail nec-

essary, and with only the necessary operators. Their system TEA-1 uses not only

the prior knowledge of a domain’s abstract and geometrical structure, but is also

reactive – it also uses information from a scene instance gathered during analysis.

The knowledge representation is through 4 kinds of Bayes Nets, (the PART-OF net,
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Fig. 8. An example of Rimey and Brown’s system [25] trying to locate a cup - the change

in its expected area as the system gathers evidence. This is Figure 9(e)–(h) in the paper, on

page 187.

the expected area net, the IS-A tree, and the task net) which are used to store differ-

ent kinds of domain knowledge. TEA-1 uses benefit-cost analysis for the control of

visual and non-visual actions. The authors show the application of TEA-1 in ana-

lyzing dinner table scenes. Figure 8 shows an example of the system trying to locate

a cup in a dinner table scene. Jensen, Christensen and Nielsen [81] adopt a similar

approach. The conditional probabilities for their Bayesian network is obtained by

subjective assessment. They show results on a network for discrimination between

a British and a Continental breakfast table scene.

4.7 Dynamic Relevance in a Vision-Based Focus of Attention Strategy

Baluja and Pomerleau [82] use the concept of Dynamic relevance in their vision-

based focus of attention strategy. The system ascertains the relevance of inputs by

exploiting temporal coherence. In their system, relevance is a time-varying func-

tion of the previous and current inputs. It dynamically allocates relevance to inputs

by using expectations of their future values. The expectation of what features will

be there in the next frame decides which portion of the next visual scene will be

focused on. The system uses a neural network with an input layer, a hidden layer

and two sets of units in the output layer: one for the output, and one for the recon-
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Fig. 9. A task-specific belief network in the system of Buxton and Gong [83] (Figure 6 on

page 448). This belief network captures dependent relationships between the scene layout

and relevant measures in motion segmentation and tracking, for their traffic surveillance

application.

structed inputs. The weights between the input layer and the hidden layer, and those

between the hidden layer and the outputs are trained to reduce the task error alone.

The weights between the hidden layer and the reconstructed inputs are trained to

reduce prediction error only. The architecture further has a feedback between the

reconstructed ‘next’ inputs, and the input layer. The input layer actually uses the

concept of a saliency map to make the system use filtered inputs. Thus, the infor-

mation that is not relevant to the task will not be encoded in the hidden layer. The

authors demonstrate the application of their ideas in various environments – vision-

based autonomous control of a land vehicle, vision-based hand tracking in cluttered

scenes, and the detection of faults in the plasma-etch step of semiconductor wafers.

4.8 Visual Surveillance

Buxton and Gong [83] present a visual surveillance system for tracking moving

objects and interpreting their patterns of behaviour. They use conceptual knowledge

of both the scene and the visual task to provide constraints to the problem. The

control of the system is through dynamic attention and selective processing. The

authors use belief networks to model dynamic dependencies between parameters

involved in visual interpretation. Figure 9 shows an example of a an application-

specific belief network used in their system. They present experimental results on a

traffic surveillance application, using a fixed pre-calibrated camera model and pre-

computed ground plane geometry. To recognize different objects in the scene, they

use volumetric models. The system tracks objects across frames.
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4.9 Environment Map Building

Nashashibi and co-workers [84] describe a system for indoor scene terrain mod-

eling using multiple range images. This relies on two grid-based representations:

the local elevation map, and the local navigation map. The authors describe their

interpolation method to build their grid-based representation of the terrain – the

local elevation map. Elevation data are used to build a symbolic grid representation

call the local navigation map. Here, each terrain patch is assigned to a pre-defined

class of terrain. They do not assume any a priori world model or landmarks to be

available. Lebègue and Aggarwal [85], [86] propose a scheme for the extraction

an interpretation of of semantically significant line segments for a mobile robot.

The detection and interpretation processes provide a 3-D orientation hypothesis for

each 2-D segment. This is used to estimate the robot’s pose, and delimit the free

space visible in the image. A motion stereo algorithm uses the orientation data to

fully estimate the 3-D Euclidean structure of the scene.

Faugeras, Ayache and Faverjon [87] also use visual cues for map-building. This

paper proposes a method to build visual maps by combining noisy stereo mea-

surements. The authors propose the idea of a Realistic Uncertain Description of

the Environment (RUDE) which incorporates local information – it is attached to

a specific reference frame, and incorporates both geometrical information, as well

as the related uncertainty information. They relate this to pixel uncertainty, and

show how the RUDE corresponding to different frames can be used to relate them

by a rigid displacement, and a measure of its uncertainty. Finally, they use the

relations between frames to update the associated RUDE and decrease the uncer-

tainty. In a more recent work, Faugeras [88] describes deterministic computational

geometry-based methods for map building. Tirumalai, Schunck and Jain [89] ad-

dress the problem of building an environmental map utilizing sensory depth infor-

mation from multiple viewpoints. They represent the environment in the form of a

finite-resolution 3-D grid of voxels. The system uses the Dempster-Shafer theory

for multi-sensory depth information assimilation.

Asada [90] extends the work of Elfes [91] (whose system uses sonar data) and pro-

poses a method for building a 3-D world model for sensory data from from outdoor

scenes. His system allows for different sources of input data, such as range and

video data. Figure 10 shows the architecture of the system. First, a range image

(‘physical sensor map’) is transformed to a height map (‘virtual sensor map’) rel-

ative to a mobile robot. the height map is segmented into unexplored, occluded,

traversable and obstacle regions from the height information. The system classifies

obstacle regions into artificial objects or natural objects according to their geomet-

rical properties such as slope and curvature. Height maps are integrated into a local

map by matching geometrical parameters and updating region labels.

Thrun [92] presents an approach that allows mobile robots to automatically se-
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Fig. 10. Overview of the map building system in [90]: Figure 2, page 1328.

lect landmarks. Landmarks are chosen based on their utility for localization. He

achieves this task by training landmark detectors so as to minimize the a posteri-

ori localization error that the robot is expected to make after querying its sensors.

The system trains a set of neural networks, each of which maps sensor input to

a single value estimating the presence or absence of a particular landmark. He

shows that using active perception helps in faster localization than with a static

camera configuration. In [93], Thrun, Burgard and Fox address the problem of

building large-scale geometric maps of indoor environments with mobile robots.

In their experiments, they investigate a restricted version of the map-building prob-

lem, where a human operator tele-operates the robot through an environment. They

pose the map-building problem as a constrained, probabilistic maximum-likelihood

estimation problem. They demonstrate experimental results in cyclic environments

of sizes up to 80 by 25 metres.

Map building strategies use two major paradigms to represent the environment –

grid-based, and topological. While grid-based methods produce accurate metric

maps, their complexity often prohibits efficient path planning. (Schiele and Crow-

ley [94] examine the problem of pose estimation using occupancy grids.) Topo-

logical maps do not suffer from this problem. However, accurate and consistent

topological maps are often difficult to learn and maintain in large-scale environ-

ments. Thrun [95] proposes an approach that integrates both paradigms. The ap-

proach learns grid-based maps using artificial neural networks and Bayesian inte-

gration of sensor output. Topological maps are generated on top of the grid-based

maps by partitioning the latter into coherent regions. The paper presents results for

autonomous exploration, mapping and operation of a mobile robot in populated

multi-room environments.
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4.10 Reactive Robot Navigation

Basri and Rivlin [96] present a method of representation that may be useful for

a reactive vision-based navigating robot. The authors extend the work of Ullman

and Basri [97] on recognition by a linear combination of models. They analyze

three basic tasks in autonomous robot navigation namely, localization, positioning

and homing. They define localization as the act of recognizing the environment i.e.,

assigning consistent labels to different locations. Positioning is the act of computing

the coordinates of the robot in the environment. Homing is the task of returning to a

previously visited position. The authors represent a scene as a set of 2-D views and

predict the appearances of novel views by linear combinations of the model views.

They assume weak perspective projection. For the case when the weak perspective

assumption is invalid, they propose using either a larger number of models, or an

iterative solution for perspective distortions. They present a method for localization

from only a single 2-D view without calibration. They have a similar method for

positioning, and a simple qualitative algorithm for homing.

Kosaka and Kak [98] present a fast vision-guided robot navigation system FINALE

using model-based reasoning and the prediction of uncertainties. Although this sys-

tem is primarily meant for a path planning task, many ideas presented here are rele-

vant for scene interpretation as well. The vision system maintains a model of uncer-

tainty and keeps track of the growth of uncertainty as the robot travels towards the

goal position. For example, the uncertainty with respect to a line is modeled as the

convex hull for the two ellipses of uncertainty at the end-points of the line. These

ellipses of uncertainty depend on the mean vector and covariances matrices of the

uncertainty in position associated with the end points of the line. The system uses

these uncertainty estimates to predict bounds on the locations and orientations of

landmarks expected to be seen in a monocular image. There is a sequential reduc-

tion in uncertainty as each image feature is matched successfully with a landmark,

allowing subsequent features to be matched more easily.

Fennema et al. [99] describe an autonomous robot navigation system at the Uni-

versity of Massachusetts, Amherst. Model-based processing of the visual sensory

data is the primary mechanism used for controlling movement through the envi-

ronment, measuring progress towards a given goal, and avoiding obstacles. They

assume a partially modeled unchanging environment containing no unmodeled ob-

stacles. the system integrated perception, planning and execution of actions. The

system models the environment using a CAD modeler. The system uses reactive

planning processes that reason about landmarks that should be perceived at various

stages of task execution. The correspondence information between image features

and expected landmark locations (the system uses line features) is used at several

abstraction levels to ensure proper plan execution. For example, when the image

of a landmark moves differently from what is expected, the system makes correc-

tions to the motor system. The system proposes partially-developed tentative plans

25



about what action to take next. These are developed depth-first with less developed

details away from the current location. Failures trigger changes in plans at various

levels. Landmarks selected from the model are used to steer the robot. Chenavier

and Crowley [100] describe a method for position estimation for a mobile robot,

using vision-based and odometric information. The system uses landmarks for cor-

recting the position and orientation of a robot vehicle. There are numerous other

examples of landmark-based navigation strategies e.g., Levitt and Lawton [101],

Onoguchi et al. [102],

Burgard et al. [103] present a modular and distributed software architecture of an

autonomous interactive tour-guide robot. The architecture integrates localization,

mapping, collision avoidance, planning and various modules concerned with user

interaction and Web-based tele-presence. The authors demonstrate results of the

deployment of their system in a densely populated museum for a period of six

days. Chen and Tsai [104] present a incremental-learning-by-navigation approach

to vision-based autonomous land vehicle (ALV) guidance in indoor environments.

The approach consists of three stages – initial (manual) learning, navigation and

model updating. In the navigation stage, the ALV moves along the learned environ-

ment automatically. It locates itself by model matching, and records necessary in-

formation for model updating. The approach uses information about vertical lines.

In the model-updating stage, the system refines the learned model off-line. A more

precise model is obtained after each navigation-and-update iteration. The authors

show results on a real ALV in indoor corridors.

5 An Analysis of Scene Interpretation Systems

Similar to our analysis of object recognition schemes, we analyze different scene

analysis systems on the basis of the following issues:

(1) Features used for modeling and view recognition

Existing scene analysis systems primarily work with geometric features, ir-

respective of whether they are obtained from a vision-based sensor, a range

sensor, a haptic sensor, or ultrasonic sensors. Systems such as that of Grimson

et al. [79] additionally use colour information.

(2) The system setup and viewing geometry

Object data acquisition systems, and systems for recovering surface shape,

both assume that the object completely fits into the sensor’s field of view. For

the other application areas, the entire scene may not fall within the sensor’s

field of view. The aim of these systems is to use the sensor in a purposive

manner, to fulfill its task. The sensors for scene analysis applications typically

have three translational and one rotational degree of freedom (e.g., naviga-

tional applications as in the system of Kosaka and Kak [98]). Some systems

such as those of Rimey and Brown [25] do not make any explicit assumptions
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about the viewing geometry. Systems such as that of Basri and Rivlin [96]

explicitly assume weak perspective projection, while those of Lebègue and

Aggarwal [85], [86] assume perspective projection.

(3) Representation of domain knowledge

Different scene analysis applications need different representation schemes to

fulfill their requirements. Rimey and Brown [25] use Bayes nets to represent

domain knowledge, and encode task specifications. In their system for 3-D

reconstruction of static scene, Marchand and Chaumette [78] propose a pre-

diction/verification scheme using decision theory and Bayes nets. The visual

surveillance system of Buxton and Gong [83] uses many different representa-

tions for its components, such as Bayes nets and ground plane maps. Artificial

neural networks form the architecture of systems that use some form of learn-

ing, such as those of Baluja and Pomerleau [82], and Thrun [92].

As mentioned in Section 4, Active map-building strategies primarily con-

sider grid-based maps (e.g., Nashashibi et al. [84], Elfes [91] (using sonar

data)) as against topological maps (e.g., [105] (using sonar and laser range

data)). Thrun [95] proposes an approach that integrates both paradigms. Basri

and Rivlin [96] represent a scene in terms of 2-D views as against the repre-

sentation of Marchand and Chaumette [78], who use explicit 3-D geometric

models.

(4) Algorithms for hypothesis generation and next view planning

Algorithms vary according to the nature of the application. Systems may use

explicit scene information to compute the next view. The approach of Maver

and Bajcsy [73] uses occlusion information, while that of Kutulakos and Dyer

(e.g., [76] uses curvature measurements on the occluding contour. The strat-

egy may be based on minimizing an uncertainty function as in [77]. Grimson

and co-workers [79] use colour and stereo features in their multi-stage algo-

rithm. Rimey and Brown [25] use a benefit-cost analysis to plan actions. There

may be a high-level general control paradigm, as in the approach of Wixson

and Ballard [80]. Map-building algorithms primarily focus on algorithms for

integrating evidences taken at different points in space and time, such as that

in [93]. Reactive navigation strategies primarily focus on reaching a goal, sub-

ject to positional uncertainty and navigational obstacles.

(5) Nature of the next view planning strategy

All systems described in Section 4 have an on-line component. The on-line

nature of such systems illustrates their reactive property – an essential re-

quirement of an active scene analysis system.

(6) Uncertainty handling capability

Some approaches such as that of Maver and Bajcsy [73] are deterministic.

Most systems handle uncertainty explicitly. Uncertainty representation schemes

include probability theory (as in the work of Marchand and Chaumette [78],

Rimey and Brown [25] and Thrun et al. [92], [93]), Dempster-Shafer theory

(as in the system of Tirumalai, Schunck and Jain [89]), and Fuzzy logic (e.g.

the real-time map building and navigation system of Oriolo et al. [69] which

does not use vision sensors)
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6 Conclusions

Sections 2 and 3 survey and analyze different active 3-D object recognition systems.

We repeat the process for different scene analysis systems (Sections 4 and 5) due

to the commonality of many issues in the two problems. Based on this survey and

analysis, we draw the following conclusions:

� Geometric features are useful in a recognition task. We may supplement them

with other features such as colour and photometric information. Some recogni-

tion systems are tightly coupled with the properties of the particular features they

use. However in some cases, we may have a system that is not explicitly based

on any particular set of features.

� The 1-DOF (rotational) case between the object and an orthographic camera is

an important and fairly complex problem. The complexity of the recognition

task increases with the number of degrees of freedom between the object and the

camera, and the increasing generality of the camera model – from orthographic

to projective.

� The knowledge representation scheme plays an important role in both generating

hypotheses corresponding to a given view, as well as in planning the next view.

� Noise may corrupt the output of feature detectors used for analyzing a given

view. An important issue is accounting for noise at both the model-building

stage, as well as in the recognition phase.

� A system with uncertainty handling capability gives it an edge over one that uses

a pure deterministic strategy – the former is more robust to errors.

� It is often desirable to use an uncalibrated camera for recogntion. An active vi-

sion system may purposively change either the external parameters of the camera

(e.g., the 3-D position), or the internal parameters (e.g., zoom-in/zoom-out). The

planning scheme should take these factors into account.

� The domain of application influences the design of the recognition algorithm.

In general, the system should plan a minimal number of steps (each step corre-

sponds to an epoch where sensor data is processed) in order to achieve its goal.

Such a process is subject to memory and processing limitations, if any.

� The next view planning strategy should preferably be on-line. The system should

balance plan-based schemes and pure reactive behaviour. A pure reactive be-

haviour may veer a system away from its goal. On the other hand, the reactive

nature of a system allows it to handle unplanned situations.
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[86] X. Lebègue, J. K. Aggarwal, Generation of Architectural CAD Models Using a

Mobile Robot, in: Proc. IEEE International Conference on Robotics and Automation

(ICRA), 1994, pp. I:711 – 717.

[87] O. D. Faugeras, N. Ayache, B. Faverjon, Building Visual Maps by Combining Noisy

Stereo Measurements, in: Proc. IEEE International Conference on Robotics and

Automation (ICRA), 1986, pp. III:1433 – 1438.

[88] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint, The

MIT Press, 1996.

[89] A. P. Tirumalai, B. G. Schunck, R. C. Jain, Evidential Reasoning for Building

Environmental Maps, IEEE Transactions on Systems, Man and Cybernetics 25 (1)

(1995) 10 – 20.

[90] M. Asada, Map Building for a Mobile Robot from Sensory Data, IEEE Transactions

on Systems, Man and Cybernetics 37 (6) (1990) 1326 – 1336.

[91] A. Elfes, Sonar-Based Real-World Mapping and Navigation, IEEE Journal of

Robotics and Automation RA-3 (3) (1987) 249 – 265.

34



[92] S. Thrun, A Bayesian Approach to Landmark Discovery and Active Perception

in Mobile Robot Navigation, Tech. Rep. CMU-CS-96-122, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA 15213 (May 1996).

[93] S. Thrun, W. Burgard, D. Fox, A Probabilistic Approach to Concurrent Mapping and

Localization for Mobile Robots, Machine Learning 31 (1998) 29 – 53.

[94] B. Schiele, J. L. Crowley, A Comparison of Position Estimation Techniques

using Occupancy Grids, in: Proc. IEEE International Conference on Robotics and

Automation (ICRA), 1994, pp. II:1628 – 1634.

[95] S. Thrun, Learning Metric Topological Maps for Indoor Mobile Robot Navigation,

Artificial Intelligence 99 (1) (1998) 21 – 71.

[96] R. Basri, E. Rivlin, Localization and Homing using Combinations of Model Views,

Artificial Intelligence 78 (1-2) (1995) 327 – 354.

[97] S. Ullman, R. Basri, Recognition by Linear Combination of Models, IEEE

Transactions on Pattern Analysis and Machine Intelligence 13 (1991) 992 – 1006.

[98] A. Kosaka, A. C. Kak, Fast Vision-Guided Mobile Robot Navigaiton Using Model-

Based Reasoning and Prediction of Uncertainties, Computer Vision, Graphics and

Image Processing: Image Understanding 56 (3) (1992) 271 – 329.

[99] C. Fennema, A. Hanson, E. Riseman, J. Ross Beveridge, R. Kumar, Model-Directed

Mobile Robot Navigation, IEEE Transactions on Systems, Man and Cybernetics

20 (6) (1990) 1352 – 1369.

[100] F. Chenavier, J. L. Crowley, Position Estimation for a Mobile Robot using Vision

and Odometry, in: Proc. IEEE International Conference on Robotics and Automation

(ICRA), 1992, pp. III:2588 – 2593.

[101] T. S. Levitt, D. T. Lawton, Qualitative Navigation for Mobile Robots, Artificial

Intelligence 44 (1990) 305 – 360.

[102] K. Onoguchi, M. Watanabe, Y. Okamoto, Y. Kuno, H. Asada, A Visual Navigation

System Using a Multi-Information Local Map, in: Proc. IEEE International

Conference on Robotics and Automation (ICRA), 1990, pp. II:767 – 774.

[103] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,

S. Thrun, Experiences with an Interactive Museum Tour-Guide Robot, Artificial

Intelligence 114 (1-2) (1999) 3 – 55.

[104] G. Y. Chen, W. H. Tsai, An Incremental-Learning-by-Navigation Approach

to Vision-Based Autonomous Land Vehicle Guidance in Indoor Environments

Using Vertical Line Information and Multiweighted Generalized Hough Transform

Technique, IEEE Transactions on Systems, Man and Cybernetics - Part B:

Cybernetics 28 (5) (1998) 740 – 748.

[105] B. Yamauchi, R. Beer, Spatial Learning for Navigation in Dynamic Environments,

IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 26 (3)

(1996) 496 – 505, Special Issue on Learning Autonomous Robots.

35


