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Action Quality Assessment using Siamese

Network-Based Deep Metric Learning
Hiteshi Jain, Gaurav Harit and Avinash Sharma

Abstract—Automated vision-based score estimation models can
be used as an alternate opinion to avoid judgment bias. In
the past works the score estimation models were learned by
regressing the video representations to the ground truth score
provided by the judges. However such regression-based solutions
lack interpretability in terms of giving reasons for the awarded
score. One solution to make the scores more explicable is to
compare the given action video with a reference video. This would
capture the temporal variations vis-á-vis the reference video and
map those variations to the final score. In this work, we propose
a new action scoring system as a two-phase system: (1) A Deep
Metric Learning Module that learns similarity between any two
action videos based on their ground truth scores given by the
judges; (2) A Score Estimation Module that uses the first module
to find the resemblance of a video to a reference video in order
to give the assessment score. The proposed scoring model has
been tested for Olympics Diving and Gymnastic vaults and the
model outperforms the existing state-of-the-art scoring models.

Index Terms—automatic scoring, Siamese, LSTM, Deep Metric
Learning

I. INTRODUCTION

HUMANS strive to attain perfection and efficiency in

their day-to-day activities and maximize the outcome of

their actions. They improve their performances by comparing

themselves with others or seeking feedback from experts. The

task of Action Quality Assessment (AQA) involves quantifi-

cation of the quality of action i.e. determining how well an

action was performed. Unlike the traditional action recogni-

tion/classification task widely attempted in the computer vision

community, where a subset of discriminative frames can help

identify the type of action, the task of action assessment is

more challenging as it requires quantitative and qualitative

assessment of the entire action sequence. AQA has applica-

tions in many areas such as sports [16], [15], health-care [23],

rehabilitation [14], exercise [6], [7] and actions of daily living

[27].

The key challenge in AQA is modelling the human sub-

jectivity as this task suffers from significant influence of

human (or expert) bias. Traditionally, the subjectivity in action

assessment has been addressed by considering feedbacks given

by multiple experts, e.g. Olympics events allows averaging

scores from multiple judges (while dropping the highest and

lowest scores). Such biases may include nationalistic bias [2],

[4], where judges give higher scores to performers from their

own countries, a difficulty bias [12], where athletes attempting
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more difficult routines receive higher execution scores, etc.

Nevertheless, the human bias in scoring is inevitable and hence

only partially addressable in any scenario. Thus, an automated

AQA system should aim bringing more interpretability in

predicted scores while being an objective source of alternate

evaluation. However, such a solution needs to learn all possible

nuances that a human expert/judge learns over the years.

Majority of the existing works on action quality assess-

ment/scoring (e.g.,[16], [19], [15], [20]) perform holistic eval-

uation of action videos and learn to predict the assessment

score from the video features. This is achieved by modeling

the task of score estimation as a regression task where the

action video representation is regressed to the ground truth

score provided by the judges. Apart from holistic evaluation,

it is also important to have a feedback on how different sub-

actions contribute to the final score for better interpretability

of the judgments. Parmar et al. [15] assume that all the sub-

action clips of the performance contribute equally towards the

final score. In addition to back propagating gradients for the

final loss, they also back propagate gradients for the individual

sub-actions. However, considering equal contributions of all

clips during training is not realistic as different segments of

an action have different contributions to the final score. In [8],

[20], authors compute the contributions of different segments

of a performance towards the final scoring. This is achieved

by learning separate regression models for a segment towards

the final score. These regression models then predict the sub-

action scores of the test videos. The rank correlation between

the predicted sub-action scores and the final scores define the

level of contribution of the sub-actions towards the final score.

For eg. in diving, the splashes are seen to have the maximum

contribution towards the scoring. Validation of the sub-actions

scores of the individual videos has not been carried out.

A more meaningful solution to bring more objectivity and

interpretability to an action assessment system is to consider

a set of reference action videos as a pivot to evaluate a

new action video. Such reference videos are expert’s videos,

which have the action performed with high precision. Thus,

the problem of action quality assessment can be transformed

into the problem of comparing a given action video with

a reference video. However, one practical challenge is the

lack of availability of a large number of reference videos

to learn a regression model. Therefore, instead of learning

how to compare a given action with an expert’s action, we

simply learn how to compare two actions. In our work we

first train a metric learning module that can compare any

two performances and predict a binary similarity label, and

then learn a regression module that can use the learned metric

to compare it with an expert’s performance. We introduce a

ar
X

iv
:2

00
2.

12
09

6v
1 

 [
cs

.C
V

] 
 2

7 
Fe

b 
20

20



2

Score: 102.8 Score: 64.8 Score: 41.25

Regression 
Network

Quality 
Score

Classical Approach

Score: 102.8

Score: 64.8

Score: 41.25

+ Shared 
Weights

Siamese Network 

Relative 
Score

Our Approach

Input Pairs 
(Reference Video 

+Candidate video)

(a)

Test VideoReference Video

Score: 102.8

        b) Piece-wise Contribution to final Score

a) Overall Score of Test Video

+

Similarity 

decreases 

at entry and  

Splash

Crash Landing  
non-vertical entry and large splash

Outcomes of our model

(b)

Fig. 1. Overview of our work; The task of scoring is transformed to the task of comparing a performance to an expert performance; Outputs of our model:
Overall performance score and Clip-level feedback

novel deep learning-based approach for AQA in which the

performances are compared with a reference performance to

determine the score. The proposed scoring system works in

two phases (Fig. 1):

• A Deep Metric Learning (DML) [24] module learns the

similarity metric between two performances using the

Siamese-LSTM network. The target label for this module

is a binary label indicating similar/dis-similar actions.

Training this module requires inputs as pairs of videos.

This has the advantage that even smaller AQA datasets

are able to generate a large number of pairs for training.

• In the second phase, a score prediction module is devel-

oped that uses the learned similarity metric and estimates

the score of a video based on its resemblance to the

reference video. The input for training this module is a

pair − an action video and an expert’s video performing

the same action.

Additionally, we attempt to find the segment (sub-activity)

level similarity using the learned DML network and identify

how different segments contribute to the final score of the

performance. This helps to make the judgement more inter-

pretable in terms of how a particular action in a video segment

is performed compared to an expert performance. The sub-

action (segment) level feedback can be verified by experts and

can be used as a ground truth for future works.

The key contributions of this work are as follows:

1) We introduce a novel approach for automated AQA in

which the predicted score depends on a relative compar-

ison between the action performances in the test video

and a reference expert video.

2) We train a DML network to learn the similarity metric

between two action sequences based on the difference in

the ground truth scores. Subsequently, a scoring network

then regresses the concatenated representations (from the

DML module) of the test video and a reference video to

the final score.

3) Feedback Proposal - The learned DML network is also

utilized to provide an unsupervised way of finding seg-

ment (sub-action) level contributions towards final scor-

ing thereby making the scoring more interpretable.

4) Through experiments we demonstrate the superiority of

the proposed framework over the state-of-the-art solutions

for AQA on publicly available Olympics diving and

gymnastic vaults datasets.

The paper is organized as follows : Section II discusses the

existing literature towards human action assessment and action

scoring. Section III explains our scoring model architecture.

Section IV describes a technique to generate sub-action level

feedback for the performers. Section V includes the exper-

imental results using the proposed approach and discusses

the performance of the proposed model. Finally the paper is

concluded in Section VI.

II. RELATED WORK

The field of human action assessment is relatively new and

there are only few works that have addressed the problem.

Few early works [7], [6], [11], [10], [9] in the domain were

hand crafted for specific actions and could not be generalised

to different types of actions. Recently, there has been develop-

ment of more generic assessment frameworks, that can broadly

be divided into two categories: 1) Action Quality Assessment

(AQA) and 2) Skill Assessment.

A. Action Quality Assessment (AQA):

Quality scoring for human actions has been posed as a

supervised regression task, where a model is learned to map

the human action features to the ground-truth scores annotated

by a domain expert.

Pirsiavash et al. [16] utilized the low frequency DCT/DFT

components of the pose features as input to the Support

Vector Regressor (SVR) to map to the final action quality

score. The pose features were estimated using Flexible Parts

Model [21] for each frame individually. Use of low frequencies

filtered out high frequency noise due to pose estimation errors.

Temporal resolution of features was improved with window-

based extraction of frequency components.

In addition to the holistic scores prediction, the authors

propose a feedback scheme in terms of giving directions
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where the body parts should move to maximize the score.

This is accomplished by differentiating the scoring function

with respect to joint location. The maximum value of the

gradient of the score with respect to the location of each

joint indicates the direction that the performer must move to

achieve the largest improvement in the score. The performance

of the proposed assessment scheme was evaluated on the

MIT Olympics dataset that consisted of two action categories:

Olympics diving and figure-skating sports.

Venkataraman et al. [19] calculated the approximate en-

tropy features using the estimated pose for each frame and

concatenated them to get a high-dimensional feature. These

features were seen to better encode the dynamical information

compared to DCT and provide a better assessment over the

MIT Olympics dataset.

Pose features provide interpretable feedback such as direc-

tions in which the limbs should be moved to maximize scores.

However, errors in pose estimation can negatively impact the

scoring models. Moreover, pose-based representations are not

capable of modeling objects used during an action (such as

sports ball or tools), and do not consider physical outcomes,

e.g. splashes in diving, which may be important features for

some activities.

Visual spatio-temporal features such as Convolution 3D

features (C3D) [18] and Pseudo 3D convolution features (P3D)

[30], learned from 3D convolution neural networks capture

both appearance and subtle motion cues in videos naturally.

These features have been recently utilized to represent human

actions for the purpose of scoring [15][20][8]. Feature extrac-

tion has been done using pre-trained models [15][8] or learned

in an end-to-end setup with a scoring objective [20].

Parmar and Morris [15] proposed three frameworks for

human action quality assessment. These were: C3D-SVR,

C3D-LSTM, and C3D-LSTM-SVR. The three frameworks

differed in the way the features were aggregated and the

regression was formulated. The authors proposed a new UNLV

sports dataset which had twice the number of diving examples

than the MIT dataset and also had gymnastic vault examples.

The frameworks proved to be more efficient than the pose-

based scoring works [16], [19].

The authors [15] introduced a new training protocol called

the incremental label training to provide sub-action level

feedback. It is expected that as an action advances in time,

the score should build up (if the quality is good enough)

or be penalized (if the quality is sub par). This intuition

was formulated as a score getting accumulated as a non-

decreasing function throughout an action. Thus a video is

divided into equal sized non-overlapping clips such that each

clip is assumed to have an equal contribution to the final

score. Incremental-label training is used to guide the LSTM

during the training phase to generate the final score along with

intermediate score outputs (i.e. back-propagation occurs after

each clip). The temporal score evolution as it changes through

the LSTM structure is utilized to identify both “good” and

“poor” segments of an action. However, training a network

with an assumption that the clips have an equal contribution

to the final score is not realistic.

Xiang et al. [20] proposed to divide a video into action

specific semantic segments and fused the segment-averaged

P3D features to learn the final score. The segment-level

features were learned by fine-tuning the P3D network to the

score regression task. Li et al. [8] divided a video sample into 9

clips and used 9 different C3D networks dedicated to different

stages of Diving. The clip-level features were concatenated

and fed to a dense network to produce a final AQA score.

The network was optimized using the ranking loss along with

the L2 loss. The ranking loss ensured the right rank order of

the predicted scores.

In both the aforementioned works [20], [8], authors con-

tribute towards finding the contributions of different segments

of a performance towards the final scoring. Different sub-

action segments of all the training videos are separately

regressed to the final scores. The rank correlation between

the predicted sub-action scores and the final scores define the

level of contribution of the sub-actions towards the final score.

For e.g., in diving, the splashes are seen to have the maximum

contribution towards the scoring.

More recently, Xu et al. [33] addressed the problem of

scoring figure skating. Figure skating videos are long and last

for few minutes unlike vaults and diving that last for only few

seconds. The assessment of such videos requires evaluation

of temporal segments as well as holistic performance. The

authors proposed a deep architecture with 2 complementary

components: Self-Attentive LSTM and Multi-scale Convolu-

tional Skip LSTM, which learn the local and global sequential

information respectively from a video. They introduced FisV,

a new large scale figure skating video dataset for evaluating

the proposed scheme. The attention weight matrix computed

using the self attentive mechanism for a specific video signifies

clip-level significance. A clip that has high weight in at least

one row of the attention weight matrix shows an important

technical movement and is otherwise considered insignificant.

The multi-scale LSTM employs several parallel 1D convolu-

tion layers with different kernel sizes unlike C3D or P3D that

have a fixed kernel size. A kernel with small size extracts

the visual representation of action patterns lasting seconds in

the videos. A kernel of large size tries to model the global

information of the videos.

In this work, we develop an action assessment system which

can provide segment-level feedback. For learning a scoring

model we consider a set of reference videos, which we call as

expert videos, i.e. the highest rated performers for the same

type of action. We transform the problem of action assessment

into the problem of (i) Generating a video representation

which incorporates comparison with an expert video of the

same type of action. (ii) Mapping the learned representation

to the aggregate score using a regression model. The same

network is also used to do a segment level comparison with a

corresponding expert video segment and generate scores which

depict assessment of the sub-action performed in that segment.

The proposed system thus provides a more interpretable as-

sessment.

Some works have addressed classifying performances into

skill levels. Zia et al. [23] extract spatio-temporal interest

points (STIPs) in the frequency domain to classify the per-

formances into amateur, intermediate or expert skill levels.
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Doughty et al. [27] learned convolutional features with ranking

loss objective function to evaluate surgical, drawing, chopstick

use and dough rolling skills. In their next work [28], they use

temporal attention LSTMs to learn weighted contributions of

different segments of the video to the final skill levels. The

benefit of using Siamese networks for the task of learning the

relative skills of performances has encouraged us to adopt a

similar approach to the task of action quality assessment and

provide interpretable feedback along with the scores.

In this work, we propose a new action quality assessment

approach that transforms the problem of assessment into the

problem of comparing a given action video with a reference

video. Thus we require a model that can learn the similarity

between two action sequences. This problem relates closely

with the problem of estimating similarity of two signature

samples. A Siamese network [31] is widely used as a deep

metric learning-based (DML) approach [22] to learn the

similarity between two sequences. The DML approach has

been used for human action recognition in [32] and has

shown promising results. While recognition is an inter-class

discrimination problem, it remains to be explored if DMLs can

learn differences between very similar sequences of the same

class. The level of resemblance can be translated into scores

pertaining to assessment of actions. We discuss our model in

Section III.

B. Action Quality Assessment Datasets

The past works have contributed Olympics dataset for 3

actions: Diving, Gymnastic Vaults and Figure Skating.

Diving Dataset: The MIT-Diving dataset [16] consists of

159 videos taken from 2012 Olympic mens 10-meter platform

prelims round. The UNLV-diving dataset [15] is an extension

to this dataset which includes semi-final and final round

videos totaling to 370 videos, each having around 150 frames.

A diving score is determined by the product of execution

score, based on judge’s assessment of the quality of diving,

multiplied by the diving difficulty score, which is a fixed value

based on diving type. The scores vary between 0 (the worst)

and 100 (the best).

More recently Parmar et al. [1] proposed a Multitask AQA

Dataset with 1412 samples of diving videos including 10m

Platform as well as 3m Springboard with both male and

female athletes, individual or pairs of synchronized divers, and

different views. The AQA score, dive type and the commentary

for each sample has been included in the dataset.

Vault Dataset: The UNLV-Vault Dataset [15] dataset in-

cludes 176 videos. These videos are relatively short with an

average length of about 75 frames. A vault score is determined

by the sum of the execution score and the difficulty score. The

score ranges from 0 (the worst) to 20 (the Best).

Figure Skating: Pirsiavash et al. [16] proposed the MIT-

skate dataset has 150 videos with 24 frames per second. On an

average, figure skating samples are 2.5 minutes long and with

continuous view variation during a performance. The judges

score ranges between 0 (worst) and 100 (best). Xu et al. [33]

proposed the Fis-V dataset which consists of 3 times more

videos than the MIT-skate dataset.

In this work we consider two action types - diving and

gymnastic vaults. We do not consider figure skating because

it is characterized by large variations of routines attempted by

performers and does not have a standard template and therefore

not suitable for assessment using comparison.

III. PROPOSED SCORING MODEL

In this work, we address the problem of human action

scoring as the problem of comparing a given action video

with a reference video depicting a high rated performance.

Our proposed assessment system is a two-phase system: 1)

A Deep Metric Learning Module which utilizes a Siamese

Network to learn a similarity metric between any two action

sequences. 2) A Score Estimation Module which utilizes the

learned Siamese Network and uses regression to estimate the

score of a video based on its similarity to the expert execution

of the same action.

We claim that learning a similarity metric before training

a scoring regression model offers an advantage because even

small training datasets can give a large number of pairs to

train the DML network. A pair need not include an expert

sequence. We explain these steps in detail.

A. Deep Metric Learning Module

The Deep Metric Learning (DML) model is trained to learn

the similarity between any two videos in a pair. The pair of

sequences to be used as training input are sampled from the set

of all videos. Fig. 2 shows the structure of the proposed metric

learning module. This module takes two video sequences Vp

and Vq as input and produces similar/dissimilar (1/0) label

as output. Similar to [15], the clip-level C3D FC-6 layer

features [18] are fed to an LSTM layer to generate a video-

level description. The target labels to be learned for the model

are binary valued 1/0, which classify the pairs to be either

similar or dissimilar. The target label for each pair is decided

based on the difference in their respective scores assigned

by the judges. If the difference in the scores is less than a

threshold th, the pairs are considered as similar (label 1), and

otherwise dissimilar. The threshold is decided based on the

type of activity being assessed. We would discuss the setting

of this threshold in the experiments section.

The C3D model provides a more compact video represen-

tation than frame-level CNN. Since an entire clip is processed

in one go, this results in fewer processing steps. For eg. a

video with 145 frames can be represented as a sequence of

9 clips each containing 16 frames (input size required for

the C3D network). Each of the two LSTM networks takes

one sequence as input and produces individually two output

vectors Op ∈ RM and Oq ∈ RM . These vectors are then

concatenated and fed into 2 fully connected dense layers, D1

and D2. The output of the dense layer is passed to one fully

connected Sigmoid layers to map the combined features of

the two videos to a binary similar/non-similar classification

output.

The effectiveness of the Deep Metric Learning module is in

terms of how well it transforms the inputs to a feature space

such that the videos with similar scores are closer in the feature
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Fig. 2. Siamese Architecture for Deep Metric Learning

space and those with a large difference in scores are moved

farther apart.

B. Score Estimation Module using Expert bias

Our proposal for action quality assessment is to compare a

video with an expert (highest rated) video and map the result

of comparison to its final score. This is different from how the

traditional scoring models have been working where a video

representation is directly regressed to the scores.

An action can be performed in various ways. For eg.

diving can be performed in forms like forward somersaults,

inward somersaults, backward somersaults, etc. In order to do

scoring in our model, each video is compared to an expert’s

performance of the same type of action. Further, we can have

one or more experts for an action type while training the

scoring model.

The scoring model utilizes the DML Siamese model, which

is a subset of the architecture shown in Fig. 2. The model

takes input as a pair with an expert and a non-expert video

depicting the same type of action. The last sigmoid layer is

replaced with a fully connected (FC) layer, so that the Siamese

network model originally trained for classifying a pair of

sequences as similar or dissimilar can now be used for the

regression task and estimate the relative score of the video.

The LSTM-Siamese weights are learned while training the

DML module. These weights are fixed during the learning of

the score estimation module. Instead, only the weights for the

final connected layer which performs regression are learned.
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Fig. 3. Score Estimation Relative to Expert

To summarize, the DML module is trained with action pairs

that include any action sequence Vp and Vq as input and the

match or no-match labels as output, while the score estimation

module is trained with the input as a pair of videos with Et

being an expert video of type t and Vqt is the qth training

video of the same action type t and the output is the ground

truth score of the sequence Vqt.

Expert performance as bias to the network The Siamese

embedding of the expert acts as a fixed but dive type dependent

bias for the regression network, because the expert is fixed

for multiple videos of the same action type. Here we show

that the gradient of the loss used to update the weights w′′

(Fig. 3) of the last layer contains a contribution of expert’s
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bias which is different for different dive types. Let the LSTM

embedding of the expert videos Et for action type t in the pair

be Oet ∈ RM and that of the qth training video be Oqt ∈ RM .

Let the concatenation of LSTM output of the two vectors be

represented as vector X ∈ R2M and likewise the outputs of

the dense layers D1 and D2 be represented as Y ∈ R128 and

Z ∈ R64.

The weights of the dense layers (w from X to Y and w′

from Y to Z) are fixed and are previously learned during

DML training. During score estimation only the weights from

layer Z to the final regression layer are learned with the target

of the ground truth score provided by judges. The scores are

estimated following these steps:

1) The vector Y for action type t and qth training video of

the same type is computed as

ytqi =

M∑

j=1

wjix
t
j +

2M∑

j=M+1

wjix
t
qj

where the first term is the contribution from the expert

and is common for all training videos of one type. We

ignore the bias to keep the calculations easy.

2) Similarly the vector Z for action type t and qth training

video is computed as

ztqk =

128∑

i=1

w′

ik(

M∑

j=1

wjix
t
j +

2M∑

j=M+1

wjix
t
qj)

=

128∑

i=1

w′

ik

M∑

j=1

wjix
t
j +

128∑

i=1

w′

ik

2M∑

j=M+1

wjix
t
qj

the first term is again the contribution from the expert,

common for all training videos of one type and the second

term depends on the qth training video of type t. Let the

first term be represented by atek and the second term be

zxt
qk. Thus ztqk = atek + zxt

qk

3) The final score is thus computed as

S
′t
q =

64∑

k=1

w′′(atek + zxt
qk)

Let the ground truth score of the qth video be Sq . The total

loss over all training examples for all types is:

Loss =

#action types∑

t=1

∑

q∈t

(Sq −

64∑

k=1

w′′

k(a
t
ek + zxt

qk))
2

Thus, while learning to estimate the scores of the videos,

experts of different action types contribute in different ways

during relative score prediction. To make the settings more

general, we can consider the bias as a contribution by any

kind of performance, e.g. it could be expert, intermediate or

worst performer.

C. Module Training

When training the DML module, there is a label imbalance

problem because the number of non-matching pairs is much

larger than the matching ones. To keep the training set bal-

anced, we increase the match pairs by using augmentation

techniques like video zoom, brightness alteration, temporal

augmentation by dropping some random frames, etc. Training

of the score estimation module follows the training of DML

module. The score estimation module is trained using only the

original training dataset, without using any augmentation.
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IV. FEEDBACK PROPOSALS

Parmar et al. [15] proposed an incremental label training

where it was expected that the temporal score evolution

as it changes through the LSTM should be monotonically

increasing. The “good” and “poor” components of an action

are identified when the evolution violates monotonicity and

the errors are expected to result in a loss of score. Following

this intuition, the predicted sub-scores from the incremental

training approach are analysed and the faulty clips are identi-

fied.

Events like Olympics Diving and Gymnastic vaults are

annotated only by a final score provided by the judge. In

order to make the assessments more interpretable and estimate

how different parts of the videos contribute to the final score,

we compute the similarity of each clip of a test video to

the corresponding clip of the expert video. To compute the

similarity of the jth clips of the two videos, we first create

the corresponding trimmed sequences which retain the jth

clips, but remove the succeeding frames and zero out all the

preceding frames. Feeding the trimmed video as input to the

LSTM provides the final hidden states at the end of the jth

clip. LSTM hidden states for the test and the expert video

are concatenated and fed to the dense layers of the Siamese

network. (Fig. 4) The final Sigmoid layer gives the probability

of similarity of the two clips. A higher probability implies that

the actions corresponding to the jth clips of the two videos

were performed in a similar way.

V. EXPERIMENTS

We compare our relative scoring approach to the baseline

absolute scoring techniques in this section.

A. Dataset Splits

The experiments are based on the Olympics UNLV Diving

Dataset and the Gymnastic Vaults Dataset[15]. For the diving

dataset, 10 training splits are used to compare the performance

of our model to the baseline models. For training the DML

module we choose the top 3 most frequent dive types from the

UNLV dataset while for training the scoring module we choose

the top 6 most frequent dives. By examining the scoring

performance on the dive types which were not seen during

training, we can comment on the generalizability of DML

training.

For training the DML module we use 10 splits of the

training set, each with 130 videos while for training the score

estimation module we use 10 splits, each with 174 training

videos. We used 90 test videos which were not included during

DML training.

We assign the match/mismatch targets as follows. We first

compute the sum of the scores awarded by the three judges.

The score awarded by a judge is in the range 0 to 10 and

has a deviation of ±0.5. This implies that while judging the

same performance a judge may not give exactly the same

score every time, but may give a slightly different score with

a tolerance of up to ±0.5. Thus the sum of the scores given

by the three judges may have a total deviation ±1.5. Since the

overall score is computed as the product of the judge’s score

with the difficulty level, which is 3±0.3, the total deviation

in the overall score is ±0.5 × 0.33 ≈ ±5. We consider two

videos to be similar if their overall scores do not differ by

more than ±5. The positive pairs to be used for training the

Siamese Metric Learning network are identified as the ones

with the two videos having a score difference of less than 5.

Based on this criteria, there are approximately 1300 positive

pairs and 1900 negative pairs in the splits. We augment

the training videos by applying augmentation techniques like

variations in brightness, zooming effect, masking of the back-

ground and histogram equalization to give us about 26000
pairs.

The UNLV vaults dataset[15] contains 176 videos with 3

vault types out of which 138 vaults are performed in tuck

position while the rest are free and twist vault types. We

consider only the 138 tuck vaults for our experiment because

the other vault types have inadequate samples for training and

testing. Similar to the diving setup, we evaluate the scoring

model for 5 train-test split, where the training set comprises

98 videos and test set comprises 40 videos. We train only

the scoring module using the vault dataset and use the same

DML module that was trained on the diving dataset. The vaults

action is considered to show the generalizability of the DML

model that has been trained for diving action.

B. Performance evaluation metrics

We evaluate the performance of the models using two

metrics:

1) Rank correlation between the predicted and the ground

truth scores : Spearman rank correlation ρ [16], [15] is

used to measure performance. Higher ρ signifies better

rank correlation between the true and predicted scores.

This metric allows for non-linear relationship, however,

it does not explicitly emphasizes the true score value, but

the relative ranking.

2) Mean Square Error between the predicted and the ground

truth scores: This metric emphasizes that the predicted

score should be as close as possible to the score.

C. Baseline Works

We compare our works with three [16], [15], [20] baseline

techniques for action score estimation. While [16] utilizes

pose-based features, the other two techniques [15], [20] use

spatio-temporal features. Also, [16], [15] are segmentation

free approaches to score estimation i.e. the information about

boundaries of the semantic segments is not available, while

[20] requires the knowledge of the semantic boundaries. Both

variants of the C3D+LSTM models proposed by Parmar et

al. [15] i.e. final score labeling (F) and incremental training

(I) are used in comparison. We use the code provided by the

authors to evaluate their performance on our dataset splits.

D. Score Estimation Results

Diving Results

Tables I and II give the average and split-wise Rank

correlation and Mean square error results for different baseline

models.
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TABLE I
COMPARISON OF RANK CORRELATION; C:C3D, L:LSTM, F: FINAL, I: INCREMENTAL, S: SVR

Baseline Works Dive Specific
Regression

models

Ours

Pirsiavash et al. [16] Parmar et al. [15] Xiang et al. [20] Scoring with Bias

Splits
Pose

+ DCT
Pose

+ DFT
C + L

(F)
C + L

(I)
C + L
+ S(F)

C + L
+ S(I)

S3D
C + L

(F)

Constant
Expert

Bias

Worst
performer

bias per dive

Best
performer

bias per dive

1 0.46 0.42 0.65 0.6 0.62 0.46 0.52 0.69 0.67 0.69 0.71

2 0.3 0.24 0.55 0.49 0.54 0.42 0.39 0.58 0.54 0.53 0.65

3 0.53 0.42 0.63 0.62 0.65 0.5 0.39 0.71 0.69 0.7 0.71

4 0.52 0.41 0.66 0.57 0.58 0.42 0.49 0.59 0.7 0.69 0.8

5 0.43 0.4 0.68 0.58 0.61 0.67 0.42 0.68 0.62 0.66 0.73

6 0.41 0.44 0.67 0.47 0.63 0.56 0.34 0.69 0.62 0.56 0.67

7 0.49 0.56 0.65 0.49 0.58 0.49 0.58 0.68 0.64 0.7 0.72

8 0.35 0.38 0.58 0.58 0.62 0.52 0.55 0.63 0.46 0.52 0.63

9 0.49 0.52 0.66 0.63 0.66 0.59 0.47 0.65 0.58 0.72 0.65

10 0.33 0.42 0.67 0.58 0.63 0.52 0.6 0.71 0.53 0.66 0.65

Average 0.43 0.42 0.64 0.56 0.61 0.51 0.47 0.66 0.6 0.64 0.69

TABLE II
COMPARISON OF MEAN SQUARE ERROR; C:C3D, L:LSTM, F: FINAL, I: INCREMENTAL, S: SVR

Baseline Works Dive Specific
Regression

models

Ours

Pirsiavash et al. [16] Parmar et al. [15] Xiang et al. [20] Scoring with Bias

Splits
Pose

+ DCT
Pose

+ DFT
C+L(F) C+L(I)

C + L
+S (F)

C + L
+S (I)

S3D
C + L

(F)

Constant
Expert

Bias

Dive
Specific
Worst

Performer
Bias

Dive
Specific
Expert

Performer
Bias

1 153.59 160.25 68.37 245.59 95.09 232.91 286.84 81.2 89.96 88.81 64.67

2 212.12 228.48 107.81 252.03 108.04 226.36 192.4 108.26 114.5 98.54 101.31

3 197.83 185.37 122.88 312.31 116.47 289.27 208.94 102.92 77.6 92.64 77.95

4 214.02 228.15 104.11 344.2 124.25 383.6 262.73 133.27 100.46 92.96 72.43

5 206.18 198.42 73.41 276.64 88.87 264.02 215.04 96.04 105.53 84.19 89.18

6 184.56 169.37 84.11 249.26 108.19 234.83 208.62 72.43 97.18 97.36 85.08

7 154.4 136.39 99.99 396.42 101.96 386.94 166.47 111.08 112.16 89.88 102.7

8 153.96 158.76 106.34 223.33 102.89 225.67 160.34 110.68 146.15 137.58 110.17

9 178.6 179.02 108.73 264.53 94.48 258.98 195.72 119.14 118.01 74.94 95.26

10 231.25 213.58 74 327.81 113.33 303.89 231.18 80.81 110.17 90.32 87.2

Average 188.65 185.78 94.97 289.21 105.35 280.65 212.83 101.58 107.18 94.72 88.59

TABLE III
EXPERT AND WORST PERFORMER DETAILS FOR DIVING

Dive
Type

Expert
Score

Count of
Expert Performers

Worst
Score

Count of Worst
Performer

1 92.8 1 51.2 1

2 102.6 2 21.6 1

3 94.05 4 34.65 1

4 99.9 2 66.6 1

5 99.75 1 36.3 1

6 102.6 1 64.8 1

For comparing the scoring model with the other baselines,

we evaluate three variants of our trained models where the

biases (reference videos) were fixed as follows: 1) an expert

bias of the first dive type is included in the pairs for all dive

types; 2) dive specific expert performer bias is included in

the pairs corresponding to the same dive type 3) dive specific

worst performer bias is included in the pairs corresponding

to the same dive type. Tables I and II illustrate that the bias

from the dive specific expert videos outperforms the other two

variants.

Table III gives the number of the best and the worst

performers for the Diving dataset and their respective scores

for individual dive types. It is seen that the experts are more

as compared to the worst performers. Thus we have around

380 pairs to train the scoring model in case of expert bias

and 174 pairs in case of worst performer bias. This leads to

an improved efficiency of scoring in case of expert bias as

compared to the worst bias even when both lead to coherent

Siamese embedding. Further, including a constant bias for the

task of scoring gives a poor performance as compared to the

case when we use a worst or expert performer as show in

Table I and II where we choose expert of dive type 1 as the

constant. This trend is followed even when we choose all 4
experts of dive type 3 which gives us around 700 input pairs.

We achieve a still lower rank correlation of 0.62 and higher

mean square error of 98.64 on average for the 10 split.

Further our proposed approach that constructs a video repre-

sentation using the dive specific expert reference outperforms

the traditional scoring models. Our model has the maximum

rank correlation and the minimum mean square error. The

improvement in the performance of our assessment model is

because we make use of a representation that is specific to the
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TABLE IV
COMPARISON OF DIFFERENT TECHNIQUES : RANK CORRELATION AND MEAN SQUARE ERROR FOR INDIVIDUAL DIVE TYPES

Baseline Works
Ours

Pirsiavash et al. [16] Parmar et al. [15] Xiang et al. [20]

Dive
Type

Pose
+ DCT

Pose
+ DFT

C + L
(F)

C + L
(I)

C+L
+S (F)

C + L
+ S(I)

S3D

Best
performer

bias per dive

RC MSE RC MSE RC MSE RC MSE RC MSE RC MSE RC MSE RC MSE

1 0.243 105.92 0.23 123.48 0.62 53.03 0.64 61.73 0.53 41.17 0.49 104.39 0.05 96.58 0.67 44.31

2 0.55 227.98 0.6 189.58 0.69 132.88 0.73 118.21 0.68 157.71 0.68 434.54 0.48 323.13 0.76 105.62

3 0.36 208.55 0.4 188.61 0.69 102.3 0.65 113.53 0.59 98.19 0.56 241.62 0.39 188.06 0.69 95.43

4 0.12 139.84 0.25 156.71 0.24 90.08 0.3 118.3 0.29 105.9 0.23 202.14 0.019 107.79 0.34 81.99

5 0.34 351.72 0.27 356.15 0.79 90.34 0.73 116.56 0.8 107.25 0.7 407.48 0.18 453.48 0.78 104.06

6 0.37 97.89 0.14 100.16 0.43 101.23 0.42 117.38 0.47 130.91 0.41 163.93 0.38 107.92 0.48 97.16

TABLE V
STUDY OF IMPACT OF METRIC LEARNING ON FINAL SCORING

Model # DML training pairs RC MSE

C+L (F) [15] NA 0.64 96.89

Without DML
With Expert Bias

NA 0.56 116.37

With DML + Expert Bias
(without augmentation)

3000 0.57 138.29

With DML + Expert Bias
(few augmented videos)

14000 0.626 107.8

With DML
(large augmentation)

26000 0.69 88.59

dive type. It is the new embedding that considers an expert bias

with the candidate video. We also learned different regression

models (C3D + LSTM) for different dive types and it was seen

that when compared to the use of bias-specific embeddings

(our model), the rank correlation between the predicted scores

from the 6 different regression models and the ground-truth

scores is lower and the mean square error is higher. This result

is indicated in Table II.

We also compare the performance of our model and the

baseline models on evaluation of scores for the individual

dive types. Table IV illustrates that our model outperforms

the baseline models for 5 dive types and performs comparable

for the 6th dive type too. Thus even when the DML module

was not trained for 3 of the 6 dive types and the model has

shown good generalization.

Next we check how the distance similarity metric learning

impacts the performance of scoring. We skip the first phase

of our framework i.e. the DML module and directly perform

scoring relative to expert. Table V shows that without the

DML phase the model gives a bad scoring performance.

Following this the DML module is introduced and trained

with and without data augmentation. With no augmentation

there are too few (1300) pairs and the Metric Learning per-

formance is poorer compared to when we include more pairs

using augmentation(26000). Further, a bad Metric Learning

adversely impacts the task of scoring. It is seen that with

too few DML module training pairs, the performance of the

scoring is lower than the original C3D-LSTM [15]. However,

with data augmentation there is a positive impact on the

performance of scoring and the DML module can identify

intra-class variations.

Finally we compare the performance of our model with the

C3D-LSTM model [15] for gymnastic vaults. The other two

baselines are not developed for gymnastic vaults.

Vault Results

We fine-tuned our model and the C3D+LSTM model de-

veloped by Parmar et al. [15] for diving to that of gymnastic

vaults. Table VI shows that our model performs better in terms

of both Rank Correlation and Mean Square Error than most

of the C3D+LSTM model variations introduced by Parmar et

al.[15]. This shows that the distance metric learning is generic

in terms of actions being compared. Thus our model not only

performs better for the dive types not included in the DML

training, but also gives better performance for gymnastic vaults

after fine tuning.

E. Feedback Proposals

Here we illustrate the efficacy of the Distance Metric

Learning module in predicting the contributions of each clip of

the action to the final score. Following the strategy of clip wise

similarity computation proposed in the last section, we achieve

a reasonably good feedback for the actions that correlate with

the Olympics commentaries, which are provided by Parmar et

al.[1]. TableVII shows the feedback proposals for some videos.

We see that the similarity of the clips decreases in consistency

with the video’s commentary.

We propose a scheme to compare the performance of our

clip-level feedback to that provided by Parmar et al. [15]. For

the test videos, the commentaries provided in the Multitask

AQA diving dataset [1] are interpreted to find the faulty clips

in the performance. This is considered as the ground truth

for feedback proposals. The clip wise similarity computed

from our DML module signify faulty clips when the Sigmoid

output is less than 0.5 i.e. the clips are not similar to the

corresponding clip of an expert execution.

We evaluate the precision and recall for the two systems in

identifying the faulty clips. Table VIII lists the comparison

results for the two systems. Our system outperforms the

LSTM+C3D aggregations proposed by Parmar et al. [15]. The

high recall of our scheme signifies fewer faulty clips that are

missed. On the contrary the lower precision mostly occur due

to misalignment of the clips.

F. Analysis of various embedding

We analyse the LSTM embedding Op and the Siamese em-

bedding D2 (Figure 2, with weights learned during the DML
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TABLE VI
RESULTS OF FINE TUNING THE DIVING MODEL ON GYMNASTIC VAULTS; C: C3D, L: LSTM, F: FINAL LABEL SCORING, I: INCREMENTAL LABEL

SCORING, S: SVR

Parmar et al.[15] Ours

C + L (F) C + L (I) C + L + S (F) C + L + S (I) Best Performance Bias

Splits RC MSE RC MSE RC MSE RC MSE RC MSE

1 0.39 0.58 0.52 0.88 0.47 0.36 0.45 0.77 0.37 0.36

2 0.45 0.62 0.63 0.86 0.55 0.5 0.67 1.04 0.39 0.46

3 0.34 0.67 0.34 0.84 0.44 0.52 0.4 0.83 0.49 0.57

4 0.19 0.88 0.33 0.72 0.16 0.61 0.35 0.64 0.36 0.45

5 0.35 0.68 0.56 0.97 0.34 0.58 0.54 0.92 0.44 0.34

Average 0.34 0.69 0.47 0.85 0.39 0.51 0.48 0.84 0.41 0.44

TABLE VII
CLIP LEVEL CONTRIBUTION TO THE FINAL SCORE

Video Number Commentary Clipwise similarity Graph Interpretation

214

<sos> eight verse three and a half
somersault oh he’s a little short on
the entry they’re beautiful through
the year as always is that top Chi-
nese divers see he just didn’t kick
out early enough and he’s not ver-
tical at all although somehow he
manages to make such a small
splash that’s great control under-
neath the water to pull that bubble
down with him like many of the
divers here they did take the chance
to get a feel of the <eos>

S
im

il
a
ri

ty

0.0

0.3

0.5

0.8

1.0

Clip Number

1 2 3 4 5 6 7 8 9

• Clip 8 - Entry Clip
• Clip 9 - Splash
• Similarity decreases on entry

and increases in the next clip

118

<sos> beautiful is back to near
his best [Applause] [Music] three
point two that’s like it he loves
to smile for the camera doesn’t he
that he loves this stage well he
is a showman and to be fair even
during the difficulties last night he
came up smiling and waving at the
camera I think he’s one of those
athletes Roger he just finds it a
joy to be here wow I’m at the
Olympics he’s old he’s done it all
before but he just thrives on it and
in 86 4 for Matthew he picked up
another <eos>

S
im

il
a

ri
ty

0.0

0.3

0.5

0.8

1.0

Clip Number

1 2 3 4 5 6 7 8 9

The similarities of the clip to the
expert clip is more than 0.5 in
all cases which indicates that the
performance is overall good.

44

<sos> it’s a bit of a crash-
landing I’m sad to say because
Wolfram was having a good com-
petition especially with his open-
ing couple of dives and it’s just
gone missing for him confidence
not there now short on position
coming into the water and a well
that’s counting him out a sixty-four
point eight is a disaster in <eos>

S
im

il
a

ri
ty

0.0

0.3

0.5

0.8

1.0

Clip Number

1 2 3 4 5 6 7 8 9

• Clip 8 - Entry Clip
• Clip 9 - Splash
• The similarity decreases at

the entry and splash clip

292

<sos> and the crowd gasps and
we’ll just leave that one to the
judges because you saw as well as
we did he would have seen that
a diver before him duomo in a
similar position in terms of rank-
ings make a mistake and he had a
chance to capitalize just made him
move up that one more spot but if
anything he’s put in a worst dive
39 6s Gilson so tough <eos>

S
im

il
a

ri
ty

0.0

0.3

0.5

0.8

1.0

Clip Number

t1 t2 t3 t4 t5 t6 t7 t8 t9

Initial clips are padded ones and
the similarity decreases in the last
three clips indicating an overall
performance.
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(a) (b)

(c) (d)

Fig. 5. t-SNE Plots of LSTM embedding and Siamese embedding of train and test data: (a) the LSTM embedding Op; (b) Siamese Embedding D2 with
Constant Bias at Op; (c) Siamese Embedding D2 with Worst Performer Bias at Op; and, (d) Siamese Embedding D2 with Expert Performer Bias at Op

TABLE VIII
PERFOMANCE COMPARISON OF FEEDBACK PROPOSAL SCHEMES

Precision Recall

C3D + LSTM [15] 0.18 0.52

C3D + LSTM + SVR [15] 0.11 0.36

Ours 0.58 0.95

module training. The 2D t-SNE plots of these embeddings for

training and test data are plotted to evaluate their coherence

across various dive types. Figure 5(a) shows the plots of the

LSTM embedding. It is seen that the different dive types do not

form clear clusters with the LSTM embedding. Similar non-

distinct clusters are observed with the Siamese embedding D2

when a constant expert of dive type 3 is passed as an input in

all the pairs (Figure 5(b)).

However, when the bias Op is made dive-specific by either

including the worst performer per dive or the best performer

per dive, the Siamese embedding are seen to become coherent

for individual dive types (Figure 5(c) and 5(d)). Thus an

inclusion of a bias Op specific to the dive types and using

the D2 embedding for the task of scoring is a good choice,

which is exhibited by improved performance as discussed in

Table I and II.

VI. CONCLUSIONS

Human action quality assessment or action scoring has been

posed as a regression problem in the past works. The simple

regression-based solutions lack interpretability. We introduce

a novel approach for action scoring in which the performances

are compared with the reference videos to estimate the final

score. A deep metric learning module learns the similarity

metric between two videos using the difference in the scores

of the videos. This module is then used to find the similarity

of the video to the reference video. Such an approach can

capture and assess the the temporal variations of videos with

the reference video. Our experiments on Olympics Diving and

Gymnastic vaults actions show that the proposed approach that

includes a bias of the high-rated reference video performs

better than the traditional scoring methods. Further, we in-

troduce an unsupervised technique to provide the sub-action

level feedback in order to make the scores more explicable.

Use of deep learning metric to assess long term actions where

alignment can be a major issue is the future direction of our

work.
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