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Abstract A domain-specific ontology models a specific

domain or part of the world. In fact, ontologies have proven to

be an excellent medium for capturingpagebreak the knowl-

edge of a domain. We propose an ontology learning scheme

in this paper which combines standard multimedia analysis

techniques with knowledge drawn from conceptual meta-

data to learn a domain-specific multimedia ontology from

a set of annotated examples. A standard machine-learning

algorithm that learns structure and parameters of a Bayesian

network is extended to include media observables in the

learning. An expert group provides domain knowledge to

construct a basic ontology of the domain as well as to anno-

tate a set of training videos. These annotations help derive

the associations between high-level semantic concepts of the

domain and low-level media features. We construct a more

robust and refined version of the basic ontology by learn-

ing from this set of conceptually annotated data. We show

an application of our ontology-based framework for explo-

ration of multimedia content, in the field of cultural heritage

preservation. By constructing an ontology for the cultural

heritage domain of Indian classical dance, and by offering

an application for semantic annotation of the heritage collec-

tion of Indian dance videos, we demonstrate the efficacy of

ou approach.
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1 Introduction

An ontology is a “formal, explicit specification of a shared

conceptualisation”.1 In other words, it is the formal rep-

resentation of a set of concepts within a domain and the

relationships between those concepts. It provides a shared

vocabulary, which can be used to model a domain, that is,

the type of objects and/or concepts that exist, and their prop-

erties and relations. It is used to reason about the properties

of that domain, and may be used to define the domain. Thus

a domain ontology (or domain-specific ontology) models

a specific domain, or part of the world. In fact, ontolo-

gies have proved to be an excellent medium for captur-

ing the knowledge of a domain. In this paper, we propose

a novel ontology learning scheme which utilizes domain

experts’ knowledge, combined with annotated examples of

the domain to construct a multimedia ontology for effec-

tive use in retrieval applications. Ontologies have been used

in multimedia retrieval applications [10,14], but applying

ontology learning to improve multimedia retrieval, specially

attuned to probabilistic reasoning as is required with multi-

media data and linked observations, has not been attempted

before.

Ontology construction is necessarily an iterative process.

An ontology representing concepts and relationships of the

domain can be constructed manually with a domain expert

providing the inputs. In this process, there is a possibility

of missing out some concepts and relations which may exist

in the real-world, while coding some extra knowledge which

might be obsolete. It is highly effective to fine-tune the knowl-

edge obtained from the expert by applying learning from

real-world examples belonging to the domain. An ontology

refined in this manner is a better structured, logically valid

1 Wikipedia definition.
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model of the domain that it represents. The goal of ontology

learning, thus, is to (semi-)automatically generate relevant

concepts and relations from a given corpus and expert inputs.

The objective of our work is to devise a framework for

learning a domain-specific ontology from multimedia data

belonging to the domain, in order to provide a highly effective

content-based access to the data contained in the repository.

The novelty of our work is the ability to encode the highly

specialized knowledge that experts of a scholarly domain

have, into an ontological representation of the domain, and

refine this knowledge by learning from observables in the

multimedia examples of the domain. Combination of domain

knowledge with example-driven supervised learning for gen-

eration of domain ontology for multimedia retrieval is a

unique contribution of this work. Learning the ontology in

our scheme employs the use of the Multimedia Web Ontol-

ogy Language (MOWL) and its unique probabilistic rea-

soning framework for representing the multimedia ontology.

MOWL representation allows a Bayesian network represen-

tation of the ontology snippets, and thus allows us to extend

a standard Bayesian network learning algorithm for learning

the structure and parameters of the multimedia ontology. We

have shown the success of our technique by applying our

work to a cultural heritage domain of Indian classical dance.

We use the ontology-specified knowledge for recognizing

concepts relevant to a video to annotate fresh additions to the

video database with relevant concepts in the ontology.

2 Related work

Research work in ontology-based multimedia information

retrieval (MIR) elaborates on how to use ontology for MIR

but not on how to relate the ontology to multimedia data.

For example, learning has been used in the LSCOM [15],

but only for concept-detection, not for learning of ontol-

ogy. Ontology learning refers to the automatic discovery and

creation of ontological knowledge using machine-learning

techniques, with little human intervention. A lot of research

in ontology learning is happening but not in the multime-

dia domain. State-of-art ontology learning approaches have

been discussed in [24]. According to this review, text is the

most used medium for learning ontologies. Limited research

exists in the area of ontology learning with multimedia con-

tent. In [25], the authors discuss the challenge of developing

domain ontologies, specially for under-developed domains,

which have no structural resources in existence. They pro-

pose the ROD methodology that can automatically dis-

cover concepts and relations from large-scale semi-structured

and/or unstructured textual resources. An example of rule-

based ontology learning can be found in the OntoLearn sys-

tem [16], which extracts relevant domain terms from a corpus

of text, relates them to appropriate concepts in a general-

purpose ontology, and detects taxonomic and other semantic

relations among the concepts. Amongst multimedia appli-

cations that use ontology learning, [11] presents a concept

hierarchy of actions and propose a method for describing

human activities from video images based on this hierar-

chy to generate a natural language sequence from a video

sequence.

2.1 Bayesian learning

Bayesian learning is a common statistical machine-learning

approach. Its use in ontology learning is limited by the lack of

support in standard ontology languages like OWL for prob-

abilistic reasoning. In [5], Ding et al. have proposed a prob-

abilistic extension to OWL by using Bayesian networks, but

this is limited to textual data. Here, we mention some of the

research happening in the field of Bayesian network learning.

Starting from his tutorial on learning Bayesian networks

in 1995 [9], Heckerman has published several works in this

field. His research focuses on structural as well as parameter

learning in Bayesian networks. Other algorithms and meth-

ods of structure learning in probabilistic networks include

so-called naive Bayesian network learning, which states that

classification is an optimal method of supervised learning in

a Bayesian network if the values of the attributes of an exam-

ple are independent given the class of the example. In [23],

Zheng et al. have considered an extension of naive Bayes,

where a subset of the attribute values is considered, assum-

ing independence among the remaining attributes. Niculescu

et al. [18] have used parameter constraints to learn the

Bayesian network. Ramachandran et al. [19] use the back-

propagation approach of the neural network to the Bayesian

network learning. In [2], the authors have focused on the

problem of learning probabilistic networks with known struc-

ture and hidden variables from data, defining what they

call the Adaptive Probabilistic Network (APN) algorithm.

They mention that an improvement for parametric learning

algorithms like APN could be to allow a domain expert

to pre-specify constraints on the conditional distributions.

Buntine [4] gives a literature review discussing different

methods of learning Bayesian networks from data.

Bayesian learning has been used in several applications

of information retrieval. Neuman et al. [17] have described

a model of IR based on Bayesian networks in [17]. In [1],

we see the usage of Bayesian learning for Neural Networks

in predicting both the location and next service for a mobile

user movement. In [21], Town et al. have described how an

ontology consisting of a ground truth schema and a set of

annotated training sequences can be used to train the structure

and parameters of Bayesian networks for event recognition.

They have applied these techniques to a visual surveillance

problem, and use visual content descriptors to infer high-

level event and scenario properties. These applications work
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Fig. 1 a Perceptual modelling, b multimedia ontology of Indian monuments, c observation model of Taj Mahal

in generic, open domains where domain knowledge is not

specialized, and there is no learning from meta-data attached

to the videos.

Motivated by the developments in Bayesian learning, we

have proposed in this paper, a scheme for learning a mul-

timedia ontology encoded as a probabilistic Bayesian net-

work. We detail our scheme for building and learning of

a multimedia ontology for an example domain of Indian

classical dance (ICD), verifying with experiments how the

snippets of ontology learnt through our framework, help in

more effective retrieval. The rest of this paper is organized

as follows. Section 3 details the multimedia ontology repre-

sentation scheme offered by the Multimedia Web Ontology

Language. In Sect. 4, we give an overview of the ontology-

based framework for a multimedia content management sys-

tem, which uses our ontology learning scheme to build the

ontology required for its working. Section 5 gives the details

of our ontology learning scheme explaining how the ontol-

ogy is learnt from domain experts’ knowledge and labelled

multimedia data. Section 6 gives details of an application of

our ontology learning framework in learning a multimedia

ontology for the heritage domain of Indian classical dance.

Section 7 concludes the paper by summarizing our findings.

3 Multimedia ontology representation through MOWL

We have used the Multimedia Web Ontology Language [8]

for representing the multimedia ontologies used in our exper-

iments. An ontology encoded in a traditional ontology lan-

guage, e.g. OWL, uses text to express the domain concepts

and the properties. Thus, it is quite straightforward to apply

such an ontology for semantic text processing. Semantic

processing of multimedia data, however, calls for ontology

primitives that enable modelling of domain concepts with

their observable media properties. This kind of modelling is

called Perceptual Modelling, an example of which is shown

in Fig. 1a. Such modelling needs to encode the inherent

uncertainties associated with media properties of concepts

too. Traditional ontology languages do not support these

capabilities.

In order to support semantic media processing, we use

the ontology representation scheme offered by MOWL,

that enables encoding of media properties for the con-

cepts in a closed domain. The basic premise of MOWL

is a causal model of the world, where real-world concepts

(and events) lead to manifestation of media features in

multimedia documents. This causal modelling distinguishes

MOWL from OWL and other knowledge representation lan-

guages. The causal model can be used for abductive reason-

ing for concept-recognition in multimedia data, where the

observed media features in a multimedia document can be

causally explained as manifestations of concepts. Syntac-

tically, MOWL is an extension of OWL. However, it sup-

ports probabilistic reasoning with observation models of the

concepts, which can be interpreted as Bayesian networks

with CPTs. This is in contrast to crisp Description Logic-

based reasoning with traditional ontology languages. MOWL

allows encoding of uncertainties which exist in the observa-

tion of multimedia data, and in some relations between con-

cepts which are probabilistic. These can be specified as joint

probabilities of a concept in relation with several other con-

cepts. This kind of reasoning is useful in concept discovery

in documents belonging to multimedia collections.

We have used MOWL to encode our domain ontology.

MOWL provides the following functionality for a multime-

dia ontology representation:

• Concepts and media properties

MOWL distinguishes between two types of entities,

namely (a) the concepts that represent the real-world

objects or events and (b) the media objects that rep-

resent manifestation of concepts in different media

forms. Detection of the media objects leads to concept-

recognition. For example, as shown in Fig. 1b, while

a monument is a real-world concept, the visual image

of the monument is a media object which represents its
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media manifestation. As another example, a specific per-

formance of a dance piece can be recognized by a set of

gestures, postures and actions, which form a set of media

objects representing the possible media manifestations

for the dance performance of a particular conceptual cat-

egory.

• MOWL relations

Relations between the concepts play an important role

in concept-recognition. For example, an important cue to

the recognition of a medieval monument can be the visual

properties of the stone it is built with (as shown in Fig. 1b).

As another example, a classical dance form is generally

accompanied by a specific form of music. Thus, detection

of media properties characterizing the music form is an

important cue to recognition of the dance form. In order

to enable such reasoning, MOWL allows definition of

a class of relations that imply “propagation” of media

properties.

• Specifying spatio-temporal relations

Complex media events can be defined in MOWL with

constituent media objects and their spatio-temporal rela-

tions with formal semantics which is consistent with and

can be executed with an extended MPEG-7 Query Engine

proposed in [22]. For e.g., in a classical dance, a certain

dance step is a choreographical sequence of certain dance

postures. A multimedia ontology should be able to spec-

ify such concepts in terms of spatial/temporal relations

between the components. MOWL defines a subclass of

media objects called <mowl:ComplexObject> which

represents composition of media objects related through

spatial or temporal relations. Every complex object is

defined by a spatial or temporal relation or predicate and

two media objects—one the subject of the predicate rela-

tion and the other the object of the predicate. For exam-

ple, a soccer goal can be represented as a complex object

with subject “ball”, spatial predicate “inside” and object

“goalpost”.

• Uncertainty specification

The relations that associate concepts and media objects

are causal relations and are generally uncertain in nature.

For example, though certain gestures and postures are

integral parts of a classical dance performance, they may

be omitted or modified in a particular instance of a per-

formance. Thus, these associations are probabilistic in

nature. MOWL provides for specification of uncertainty

of these associations in a multimedia domain by provid-

ing special constructs for defining Conditional Probabil-

ity Tables (CPTs) and associating them with concepts and

media objects.

Fig. 2 Framework for ontology-based management of multimedia

content

• Reasoning with Bayesian networks

The knowledge available in a MOWL ontology is used

to construct an observation model (OM) for a con-

cept, which is in turn used for concept-recognition. This

requires two stages of reasoning:

1. Reasoning for derivation of observation model for a

concept. This requires exploring the neighbourhood

of a concept and collating media properties of neigh-

bouring concepts, wherever media property propaga-

tion is implied. The resultant observation model of a

concept is organized as a Bayesian network (BN).

2. Reasoning for concept-recognition. Once an obser-

vation model for a concept is created, it can be used

for concept recognition. We use an abductive reason-

ing scheme that exploits the causal relations captured

in the observation model (Fig. 1c).

4 Ontology-based management of multimedia resources

Multimedia resources pertaining to a domain can include dig-

ital replicas of domain artefacts, events, etc. Depending on the

domain, these can be videos or still images of soccer matches,

paintings, sculpture or dance performances, as well as the

contextual knowledge relating to these resources, which is

contributed by domain experts. Our proposed scheme for

multimedia resource management is motivated by the need

for relating the digital objects with contextual knowledge, to

make the former more usable. With these requirements, we

have proposed an ontology-based framework for multime-

dia content management with flexible structure and dynamic

updation. In this paper, we focus on our technique of building

the multimedia ontology, which is the backbone of this frame-

work, with the help of knowledge obtained from domain

experts and then learning it from real-world data which is part

of the digital resources of the domain. There are four main

stages in the framework, namely knowledge acquisition,

ontology learning, application and evaluation, as shown

in Fig. 2.
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Fig. 3 Basic Ontology snippet

ŴB of the ICD domain as

specified by the domain experts,

enriched with multimedia

1. Knowledge acquisition This stage deals with acquiring

the highly specialized knowledge of a domain and encod-

ing it in a domain-specific ontology. It also involves col-

lecting the multimedia data of the domain and building a

digital collection. To begin with, a basic seed ontology for

the domain is hand-crafted by a group of domain experts.

The ontology includes the domain concepts, their proper-

ties and their relations. The domain experts also provide

conceptual labels to a training set of multimedia data.

They annotate the multimedia files and their segments,

based on their observations, in such a way that the labels

correspond to domain concepts in the ontology.

2. Ontology learning At this stage, the basic ontology,

enriched with multimedia data, is further refined and

fine-tuned by applying machine-learning from the train-

ing set of labelled data. We use MOWL to represent the

ontological concepts and the uncertainties inherent in

their media-specific relations. The multimedia ontology

thus created, encodes the experts’ perspective and needs

adjustments to attune it to the real-world data. Conceptual

annotations help build the case data used for applying a

machine-learning technique called the Full Bayesian net-

work (FBN) learning to refine the ontology. An important

part of the ontology learning stage is the development of

media pattern classifiers which can detect media pat-

terns corresponding to lowest-level media nodes in the

ontology based on the presence of content-based media

features. MOWL supports probabilistic reasoning with

Bayesian networks in contrast to crisp Description Logic-

based reasoning with traditional ontology languages. We

compute the joint probability distributions of the con-

cept and the media nodes and apply the FBN technique

to create the probabilistic associations. The technique is

applied periodically as newly labelled multimedia data

instances are added to the collection and the ontology

is updated. This semi-automated maintenance of ontol-

ogy alleviates significant efforts on the part of knowledge

engineers.

3. Application The multimedia ontology is used for

annotation generation for new instances of digital arte-

facts. A set of media feature classifiers are used to detect

the media patterns corresponding to the media nodes in

the ontology. The MOWL ontology can then be used to

recognize the abstract domain concepts using a proba-

bilistic reasoning framework. The concepts so recognized

are used to annotate the multimedia artefacts. The goal

behind building such a framework is to give a novel multi-

media experience to the user seeking to retrieve resources

belonging to a digital collection. The conceptual annota-

tions are used to create semantic hyper-links in the digi-

tal collection, which along with the multimedia ontology,

provide an effective semantic browsing interface to the

user.

4. Evaluation As the multimedia ontology is created and

maintained along with the building of the digital collec-

tion, each process in our framework is constantly eval-

uated for integrity and scalability. Users and domain

experts are part of the process of updating the knowledge

base as new learning takes place and changes happen in

the real world.

5 Ontology learning from multimedia data

Ontology learning not only improves the efficiency of ontol-

ogy development process, but also enables discovery of new

knowledge by tapping into data repositories. The data avail-

able with multimedia collections are of two kinds: Textual

meta-data which gives additional knowledge about the con-

tent, and Content-based features extracted from the multime-

dia data. There are different approaches to multimedia data

handling using either or both these kinds of data. Success in

multimedia analysis and retrieval applications has been seen

to occur in those methodologies which effectively combine

these to complement each other. In this section, we describe

how we are able to use both kinds of data to refine the basic

multimedia ontology constructed at the previous stage.
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There are two inputs to the Ontology Learning process—

a basic ontology of the domain which is constructed with

the help of knowledge provided by the domain experts,

and conceptual annotations by domain experts, based on

observable parameters in the media files. We illustrate

the ontology learning by taking a simple example snip-

pet from the basic ICD ontology ŴB shown in Fig. 3.

This seed ontology for the ICD domain is initially con-

structed by encoding specialized knowledge gathered from

the domain experts. Next step involves annotating the

training data and correlating media features. This snip-

pet, enriched with media features (pink elliptical nodes),

shows BharatnatayamDance and OdissiDance as two

styles of IndianClassicalDance. BharatnatyamDance

is related to the music form CarnaticMusic and a con-

cept Teermanam which is a dance step typically contained

in BharatnatyamDance performances. Media manifesta-

tions of CarnaticMusic include a musical beat called

AdiTaal and an instrument MridangamInstrument which

is regularly played as part of a Carnatic music perfor-

mance. The concepts related to OdissiDance are the music

accompanying its performances which is OriyaMusic, and

the concept Chawk which has media manifestations in

the form of a posture ChawkPosture and a dance step

ChawkBhramariDanceStep. MOWL encoding of the ontol-

ogy is done to associate the expected media patterns with

concepts as well as to associate probability values to the

CPTs. Some of the probability values come from the domain

experts’ perspective, while the others are obtained from the

training set of videos. The pair of values at each link in the

ontology denote the conditional probabilities P(M | C) and

P(M | ¬C), where C is a concept and M represents an

associated concept or media pattern.

Uncertainty specification is supported in MOWL, and

Bayesian network reasoning is possible with observation

models derived out of a MOWL ontology. With this fact in

mind, we explain the learning of our MOWL ontology in

terms of Bayesian network learning. We apply a standard BN

learning algorithm and extend it to learn uncertainty between

concepts and their media properties. The basic structure of

the BN for a concept, which is the start point of the learn-

ing, comes from its OM drawn from the basic domain ontol-

ogy in MOWL. The BN is learnt using the training set of

annotated videos which provide the case data for learning.

The learnt BN may have some new links between the nodes

while some older links may be deleted if the causal depen-

dency between the two nodes is below a threshold. Once

the BNs are learnt, the learning is then applied to update

the structure and uncertainties encoded in the basic MOWL

ontology. The efficacy of learning is tested by building appli-

cations of annotating, searching and browsing based on the

learnt ontology and testing for expected improvement in

results.

5.1 Bayesian network learning

A Bayesian network is characterized by its topology and

the conditional probability tables (CPTs) associated with its

nodes. The goal of learning a BN is to determine both the

structure of the network (structure learning) and the set of

CPTs (parameter learning). An OM in our scheme, modelled

as a Bayesian network, is in effect, a specification for the

concept in terms of searchable media patterns. The joint prob-

ability distribution tables that signify causal strength (signifi-

cance) of the different media properties towards recognizing

the concept are computed from the probabilistic associations

specified in the ontology. Thus, we have already got a basic

structure of the BN with CPTs reflecting the domain experts’

knowledge of the domain. Our aim is to use the learning

algorithm—to refine this structure, which includes (1) dis-

covering new links or relationships between concepts, and

(2) removing some obsolete links, i.e. getting rid of some

properties or relationships which do not exist in data; and—to

learn the parameters of the Bayesian network. The algorithm

must take into account the media observables or features that

are associated with the concept nodes.

For our learning scheme, we have selected a standard

Bayesian learning technique called the Full Bayesian Net-

work learning [20]. We have extended this algorithm to learn

structure and parameters of the Bayesian networks which cor-

respond to the OMs for concepts in our multimedia ontology.

The data for learning come from the training set of videos

using the media-based features of the examples which help

assign values to the variables in the network.

BN structure learning often has high computational com-

plexity, since the number of possible structures is extremely

huge. FBN overcomes the bottleneck of structure learning by

not using the structure to represent variable independence.

Instead, all variables are assumed dependent and a full BN

is used as the structure of the target BN. FBN learning uses

decision trees as the representation of CPTs [6] to obtain a

more compact representation. The decision trees in CPTs are

called CPT-trees. In learning an FBN classifier, learning the

CPT-trees captures essentially both variable independence

and context-specific independence (CSI).

For each OM extracted from the base ontology ŴB , a set

of subnets, each of which is a naive Bayesian network and

has a height = 1, is obtained. The CPTs are copied into

each subnet from the OM. FBN learning from case data

takes place in each subnet, updating the structure and the

parameters of the BN. The learnt subnets then update the

OM and the learnt OMs are used to update the ontology.

Figure 4a shows a subnet which is a naive Bayesian net-

work, constructed from a snippet of the MOWL ontology,

showing a concept node C , related to some other concepts X i

by MOWL relations. X i are further connected to some media

nodes shown as leaf nodes Fi s in the snippet. These denote
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Fig. 4 Full Bayesian network with observable media features

Fig. 5 Observation Model of concept BharatnatyamDance from

ICD ontology ŴB , split into its subnets for FBN learning

the media observable features associated with the concept.

For example, the OM for concept node BharatnatyamDance

(Fig. 5), has Carnatic Music as a related concept, which

is further associated with the observation of the media pat-

terns AdiTaal and MridangamInstrument. In this figure,

we show how the OM for BharatnataymDance is split

into naive Bayesian subnets. FBN structure learning in

Sect. 5.2 explains the learning of each subnet, in terms of

learning an FBN classifier, for a concept C and attributes

X i , with CPT learning. In Sect. 5.4, we have extended

the FBN learning algorithm to that part of the BN, where

observation of media features is associated with high-level

concepts.

5.2 FBN structure learning

Given a training data set S, we partition S into |C| subsets,

each Sc of which corresponds to the concept value c, and

then construct an FBN for Sc. Learning the structure of a full

BN actually means learning an order of variables and then

adding arcs from a variable to all the variables ranked after it.

The order of the variables is learnt based on total influence

of each variable on other variables. The influence (depen-

dency) between two variables can be measured by mutual

information defined as follows:

M(X, Y ) = �xy P(X, Y ) log P(X, Y ) (1)

where x and y are the values of variables X and Y, respectively.

Since we compute the mutual information in each subset Sc of

the training set, M(X, Y ) is actually the conditional mutual

information M(X,Y|c). This ensures a high probability of

learning true dependencies between variables. In practice,

it is possible that the dependency between two variables,

measured by Eq. 1, is caused by noise. Thus, a threshold value

is required to judge if the dependency between two variables

is reliable. One typical approach to defining the threshold is

based on the Minimum Description Length (MDL) principle.

Friedman and Yakhini [7] show that the average cross entropy

error is asymptotically proportional to logN/2N where N is

the size of the training data. Their strategy is adopted to define

the threshold to filter out unreliable dependencies as follows:

ϕ(X, Y ) = log 2N/2N ∗ Ti j (2)

where Ti j = |X i | × |X j |, |X i | is the number of possible

values of X i , and |X j | is the number of possible values of X j .

In structure learning algorithm the dependency between X i

and X j is taken into account only if M(X i ; X j ) > ϕ(X i , X j ).

The total influence of a variable X i on all other variables

denoted by W (X i ) defined as follows:

W (X i ) =

M(Xi ;X j )>Q(Xi ,X j )∑

j ( j �=i)

M(X i ; X j ) (3)

Equation 3 for concepts in BharatnatyamDance subnet in

Fig. 6, computes W (BharatnatyamDance) > W

(CarnaticMusic) > W (Teermanam). Accordingly, an

ordering is imposed on the nodes in the subnet, to gener-

ate a new structure. Once CPTs are learnt, as detailed in the

next section, the parameters determine whether all the links

are retained, or some are deleted. Figures 5, 6 and 7 show

the splitting of the OM for concept BharatnatyamDance, its

FBN learning and updation afterwards.

5.3 Learning CPT-trees

After the structure of an FBN is determined, a CPT tree

should be learned for each variable X i . As per FBN learning,

we have used the Fast decision tree learning algorithm for

learning CPTs. Before the tree growing process, all the vari-

ables X j in π(X i )(parent set of X j ) are sorted in terms of
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Fig. 6 Subnets of BharatnatyamDance OM updated with FBN

learning.

mutual information M(X i , X j ) on the whole training data,

which determines a fixed order of variables. In the tree grow-

ing process, the variable X j with the highest mutual informa-

tion is removed from π(X i ), and the local mutual information

M S(X i , X j ) on the current training data S, is computed. If it

is greater than the local threshold ϕS(X i , X j ), X j is used as

the root, and the current training data S is partitioned accord-

ing to the values of X j and this process is repeated for each

branch (subset). The key point here is that, for each variable,

the local mutual information and local threshold is computed

only once. Whether failed or not, it is removed from X i and is

never considered again. The fast CPT-tree learning algorithm

can also be found in [20].

5.4 Learning associations of observables with concepts

We have extended the FBN learning algorithm to learn asso-

ciations of concepts with observables features. Figure 4b

shows a concept node X1 with associated media properties

F1–F4 as its children. An FBN is constructed for each value

xi of X1 denoting an ordering amongst media features. CPT-

trees denoting uncertainties between a concept and its media

properties are learnt using the same algorithm as for learning

uncertainties between concepts. The basis of the FBN algo-

rithm is the mutual information which denotes the influence

(dependency) between two attributes, i.e. two media features

here. This is computed by equation 4.

M(Fi , F j ) = � fi , f j
P( fi , f j ) log P( fi , f j ) (4)

where fi and f j are values for Fi and F j , respectively.

M(Fi , F j ) is actually the conditional mutual information

M(Fi , F j )|xi ), i.e. dependency between the two features,

given a value xi of the concept X1. To compute P( fi , f j ), we

need to map the features extracted to a fixed set of symbolic

Fig. 7 Observation Model of concept BharatnatyamDance

updated after FBN learning

features values in the features space. To recognize symbolic

feature states in each feature space, we apply the following

clustering scheme.

We pick a set of N randomly selected videos from our

video database for clustering. Every video is randomly sub-

sampled to get S samples. These samples could be single

frames or a group of frames (GoFs), each consisting of a

group of c continuous frames—the value of c depends on

video size. Different low-level media features as required by

the media classifiers are extracted for each GoF. These feature

values are then clustered using K-Means clustering to form

K clusters in each feature space. Therefore, for each feature

space N × S feature values are found that are clustered to get

K clusters. The K cluster center values represent K symbolic

feature states or media feature ‘terms’ which are available in

the data set. Each other video in the collection is similarly

preprocessed and sub-sampled to extract media features for S

GoFs in the video. By performing feature-specific similarity

computations of feature values with feature ‘terms’, we can

recognize the occurrence of these ‘terms’ in a video. This

media-feature extraction, clustering and modelling scheme is

explained in detail in [13]. Thus computation of probability

P( fi , f j ) is mapped to computation of P(ck, dl) where ck

and dl denote cluster center values which fi and f j map to,

in their respective feature spaces.

After computing mutual information between features,

the FBN algorithms for structure and parameter learning

can be applied, to learn the association of the concept

with each feature as well as dependencies between features.

The CarnaticMusic subnet in Fig. 6, illustrates the associ-

ation of the concept CarnaticMusic with its media mani-

festations AdiTaal and MridangamInstrument, along with

the new ordering amongst the media nodes, learnt through

the FBN technique.
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6 Application of ontology learning in a heritage domain

In this section, we illustrate the application of our ontology

learning scheme in building the ontology of the ICD domain

detailing each step in the construction process. We show how

the ontology is constructed from domain knowledge, then

fine-tuned with the help of FBN learning using labelled ICD

videos. We then validate the performance of our ontology

learning scheme with experiments that measure the simi-

larity in structure between the FBN learnt ontology and an

expected ontology as provided by the experts. Another set

of experiments which validate the parametric learning have

been done to recognize the various abstract domain concepts

with the help of the learnt ontology.

6.1 ‘NrityaKosha’ compilation

The ICD heritage collection called ‘NrityaKosha’ was com-

piled by gathering dance videos from different sources. These

include a highly specialized collection called ‘Symphony

Celestial Gold Edition’ purchased from Invis Multimedia,2

which contains videos of classical dance performances by

eminent Indian artists. Another set of high-quality dance

performance videos was obtained from the Doordarshan

Archives of India.3 Many dance DVDs were donated for

research purposes by reputed artists of ICD [12]. The videos

contain dance and music performances, training and tutorials

on different dance forms, as well as many interviews and talks

on ICD. We started work with a data set of approximately

20 h of dance videos. These consist of dance performances

of mainly two Indian classical dance forms—Bharatnatyam

and Odissi. The ICD ontology was constructed by encoding

specialized knowledge gathered from the domain experts, as

well as from dance manuals like Natya Shastra and Abhinaya

Darpan.

The ICD dance videos, talks and interviews provided us

with additional domain knowledge to formulate this basic

ontology. The ontology is written in MOWL. The experts

gave their observations on a set of about 30 % ICD videos,

specifying dance forms, music forms, dance postures, dance

steps, hand-gestures, name of a dancer, musicians, etc., that

were part of a dance performance. Other meta-data about the

video snippets was collected from the DVD covers, back-

ground commentary, scrolling text (ticker) and web. A video

annotation tool, which allows conceptual annotation of dif-

ferent parts of a video at multiple levels of granularity, was

used for this purpose. It creates video annotation files in

an XML format, in tune with MPEG-7-based description

scheme. These were then used as a training set to fine-

tune the ICD ontology by applying FBN learning. Our ICD

2 http://www.invismultimedia.com.

3 http://www.ddindia.gov.in/About%20DD/Programme%20Archives.

ontology contains around 500 concepts related to Indian

dance and music in the ontology, out of which about 260

have media-observable patterns (features/examples) associ-

ated with them. Based on the expert observations, video

frames showing dance postures, short video clips containing

dance actions, wav files for music forms, etc., were extracted

from the training set of videos. These multimedia files were

attached as multimedia examples to the relevant domain con-

cepts in the ICD ontology, and were also used as training data

to train media detectors.

The ontology learning which happens in our framework

has two aspects:

• learning the structure of the ontology, which involves

addition and deletion of links in the ontology, thus

changing the causal dependencies between concepts, and

between concepts and media nodes.

• learning the parameters which are the conditional prob-

abilities of the causal relations in the ontology.

In this section, we illustrate the validation of learning the

structure and the parameters of a multimedia ontology, using

ICD ontology as an example. The parameters are simulta-

neously learnt in the FBN algorithm, and are verified with

demonstration of concept-recognition and semantic annota-

tion generated as its consequence.

6.2 Learning the structure of ICD ontology

To conduct the experiments for validating the learning of

ontology, we need an expected version of the ontology as a

benchmark, with which we can compare the learnt ontology

and verify that the structure learnt is valid given a bounded

error margin. The starting point in the ontology learning

process, is the basic ontology ŴB , constructed from domain

knowledge obtained from dance gurus (teachers and mas-

ters), and enriched with multimedia data from the labelled

examples. This ontology represents the domain experts’ per-

spective and encodes the complexities of the background

knowledge of the heritage ICD domain.

We obtained an expected version of the ontology ŴE

shown in Fig. 8 from a different set of domain experts—the

Indian classical dancers who have contributed their dance

videos to the ICD heritage collection. Their version of the

ontology differs in structure with ŴB , as the domain con-

cepts and their relationships, as interpreted by the dancers are

more in tune with the current context in which the dance per-

formances take place. Indian classical dance domain being

a heritage domain, the dancers do not have the liberty of

adapting the rules and grammar of the domain beyond a cer-

tain permitted boundary, but they do understand the practical

dependencies and corelations between dance, music, pos-
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IndianClassicalDance

Bhara tna tyamDance

isa

(0.60,0.00)

OdissiDance

isa

(0.40,0.00)

Carnat icMusic

hasMus ic

(0.90,0.14)

Tee rmanam

contains

(0.90,0.00)

OriyaMus ic

hasMus ic

(0.80,0.00)

C h a w k

contains

(0.45,0.30)

AdiTaa l

h a s M O

(0.40,0.00)

Mridangam

Instrument

h a s M O

(0.76,0.01)

Tee rmanam

DanceStep

h a s M O

(1.00,0.00)

ChawkBhramar i

DanceStep

h a s M O

(0.15,0.00)

ChawkPos tu re

h a s M O

(0.92,0.00)

h a s M O

(0.96,0.03)

h a s M O

(0.85,0.29)

Fig. 8 Expected ontology snippet ŴE of the ICD domain as specified

by the Indian classical dancers

tures, themes and roles in the existing scenario better than

the theoretical knowledge that the dance gurus might posses.

We perform the FBN learning on observation models

obtained from ŴB , then apply that learning to ŴB to obtain

the learnt ICD ontology ŴL . A graph matching performance

measure is applied to measure the similarity between the two

versions of the ontology:ŴL and ŴE .

6.2.1 Performance measure

A MOWL ontology is a directed, labeled graph, and so are the

two versions of the ontology—ŴL and ŴE , which need to be

measured for similarity. There are several standard similarity

measures defined to compute similarity between directed,

labeled graphs, which are graphs with a finite number of

nodes, or vertices, and a finite number of directed edges. We

have chosen graph edit distance and maximum common sub-

graph reviewed in [3]. A maximum common sub-graph of

two graphs, g and g′, is a graph g′′ that is a sub-graph of both g

and g′ and with the maximum number of nodes, from among

all possible sub-graphs of g and g′. The maximum common

sub-graph of two graphs need not be unique. The larger the

number of nodes in the maximum common sub-graph of two

graphs, the greater is their similarity.

The other performance measure graph edit distance pro-

vides more error-tolerant graph matching. A graph edit oper-

ation is typically a deletion, insertion, or substitution (i.e.

label change), and can be applied to nodes as well as to edges.

The edit distance of two graphs, g and g′, is defined as the

“shortest sequence of edit operations” that transform g into

g′. Obviously, the shorter this sequence is, more similar are

the two graphs. Thus, edit distance is suitable to measure the

similarity of graphs. According to [3], the maximum common

sub-graph g′′ of two graphs g and g′ and their edit distance

are related to each other through the simpleequation

d(g, g′) = |g| + |g′| − 2|g′′| (5)

where |g|, |g′| and |g′′| denote the number of nodes of g, g′

and g′′, respectively.

6.2.2 Logic and implementation

The process of applying ontology learning in terms of obtain-

ing the OMs from ontology, learning the OMs and then updat-

ing the ontology with the changed structure and parameters

is detailed in algorithm 1 The two inputs to this algorithm

are the basic ontology ŴB and case data obtained from the

labelled set of files from the multimedia collection, in our

case the labelled videos from the ICD collection. As men-

tioned in Sect. 5.1, a set of naive Bayesian subnets, each

of height = 1, is obtained for each OM extracted from ŴB .

The CPTs are copied into each subnet from ŴB . FBN learn-

ing from case data takes place in each subnet, updating the

structure and the parameters of the BN. The learnt subnets

then update the OM and the learnt OMs are used to update the

ontology. The output of the algorithm is the learnt ontology

ŴL .

The implementation of the Bayesian network learning

applied here, was done with the Netica Java API (NeticaJ).4

Figure 8 shows the expected version of ICD ontology. The

main difference with the specifications in ŴB are as follows:

• Chawk Bhramari dance step contains the Chawk

posture.

• Adi taal musical beat has Mridangam instrument as

its media observable, as the latter is often used in Bharat-

natyam dance performances to play the former. Some of

the probabilities specified in the two ontologies are also

4 http://www.norsys.com/netica-j.html.
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Fig. 9 Observation Model of concept OdissiDance from ŴB , split

into its subnets for FBN learning

different, but we are not looking at parametric similarity

here.

Similar to the learning of BharatnatyamDance subnet

in Sect. 5.2, here we show the splitting of the OM for

OdissiDance, its FBN learning and updation in Figs. 9

and 10. Figure 11 shows the learnt ICD ontology ŴL which

is constructed after the updated OMs of concepts Bharat-

natyam and odissidance have been used to update the basic

ontology ŴB .

Applying the graph similarity performance measures, we

first find the maximum common subgraph ŴC of the two

graphs ŴE and ŴL . Then graph edit distance between the

two graphs is computed as follows:

d(ŴE , ŴL) = |ŴE | + |ŴL | − 2|ŴC | (6)

where |ŴE |, |ŴL | and |ŴC | denote the number of nodes

of ŴE , ŴL and ŴC , respectively. As we can see here the

d(ŴE , ŴL) = 2 for the ICD example snippet ontology shown

here. Out of the approximately 500 concepts in the ICD ontol-

ogy, there are around 182 concepts which are at a suitably

high abstract level where their observation models can be

tuned with the FBN learning algorithm. We experimented

with 75 observation models, with number of nodes in the

OMs ranging from 6 to 10 and the number of edges ranging

from 5 to 10. We obtained an average performance of graph

edit distance = 2.4 between the learnt and expected versions.

6.3 Parametric learning of ICD ontology

and concept-recognition

FBN learning from case data leads to change in the structure

and parameters of the Bayesian network representing the OM

extracted from the ontology. After all the OMs have been

learnt, they are used to update the structure of the ontology

and also change the joint probabilities encoded in the ontol-

ogy according to the new parameters learnt in the OMs. The

ontology learnt in this manner is dynamic, as it can be refined

and fine-tuned automatically with additions to the video data-

base. The newly learnt ontology can then be applied afresh

to recognize concepts in the video database. If the learning

is good, then the concept-detection and subsequent annota-

tion generation should show improved results with the fine-

tuned ontology. We discuss a small example from the ICD

domain to demonstrate how concept-detection improves with

the domain ontology changed after applying FBN learning.

6.3.1 Concept-recognition using MOWL reasoning

Once an OM for a semantic concept is generated from a

MOWL ontology, the presence of expected media patterns

can be detected in a digital multimedia artefact using appro-

priate media detector tools. Such observations lead to instan-

tiation of some of the media nodes in the OM, which in turn,

result in belief propagation in the Bayesian network. The pos-

terior probability of the concept node as a result of such belief

propagation, represents the degree of belief in the presence

of the semantic concept in the multimedia artefact.

For e.g., in Fig. 12, the BN corresponding to the OM of

concept Mangalacharan is shown after some media patterns

have been detected in an Odissi dance video and correspond-

ing media nodes have been instantiated. The links between

Fig. 10 Observation Model of

OdissiDance, with its FBN

learning and updation
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IndianClassicalDance

Bhara tna tyamDance
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(0.54,0.00)

OdissiDance

isa

(0.46,0.00)

Carnat icMusic

hasMus ic

(0.94,0.14)

Tee rmanam

contains

(0.21,0.29)
OriyaMus ic

hasMus ic

(0.99,0.00)

C h a w k

contains

(0.35,0.33)

F B N

(0.21,0.29)

AdiTaa l

h a s M O

(0.36,0.00)

Mridangam

Instrument

h a s M O

(0.70,0.79)

F B N

(0.35,0.33)

Tee rmanam

DanceStep

h a s M O

(1.00,0.00)

ChawkBhramar i

DanceStep

h a s M O

(0.19,0.00)

ChawkPos tu re

h a s M O

(0.96,0.96)

F B N

(0.96,0.96)

F B N

(0.70,0.79)

Fig. 11 Learnt ontology ŴL of the ICD domain with its structure and

parameters changed due to FBN learning from case data

concept nodes, between media nodes and between a con-

cept and a media node denote causal relations as well as

uncertainty specifications that have been learnt from data.

Bracketed value with the name of each node denotes its pos-

terior probability after media nodes have been instantiated

and belief propagation has taken place in the BN. In this

video, the media patterns detected with the help of concept-

detectors are ChawkPosture and PranamPosture, shown as

dark pink ellipses.

6.3.2 Concept-recognition after parametric learning

Figure 13 shows the OM of the ICD concept Mangalacharan

after FBN learning has been applied to it. The OM is con-

structed from the ICD ontology refined with FBN learning, so

the probability values shown correspond to real-world data.

After applying FBN learning, some new relations (shown

with green links and labelled FBN) were added, based on

statistical evidence in case data.

Let the media patterns detected in the test Odissi dance

video be ChawkPosture and PranamPosture. The corre-

sponding media nodes are instantiated in theMangalacharan

OM generated from the FBN learnt ICD ontology. As in the

earlier case, Chawk and Pranam are the low-level concepts

which are recognized due to presence of these media pat-

terns in data. Due to an FBN link between PranamPosture

and PranamDanceStep, the latter node is also instantiated,

thus leading to higher belief in the presence of concept

BhumiPranam in the video. Higher level concept nodes

Mangalacharan(0 .57)

Odiss iDance(1.00)

(1.00,0.43)

BhumiP ranam(0 .34)

(0.43,0.01)

Chawk(0 .9 )

(0.32,0.00)

Tribhang i (0 .15)

(0.15,0.00)

MadhumitaRau t (0 .02)

(0.02,0.00)

ChawkPostu re(1 .00)

(0.96,0.00)

Tribhang iStep(0.11)

(0.75,0.00)

MadhuFace(0 .02)

(1.00,0.00)

P ranam(0.87)

(0.39,0.01)

P ranamPostu re(1 .00)

(1.00,0.00)

P ranamDanceStep(0 .00)

(0.86,0.00)

Fig. 12 Concept-recognition in the Mangalacharan OM generated from the basic ontology ŴB

Mangalacharan(0 .66)

Odissi(0.99)

(1 .00 ,0 .43)

BhumiP ranam(0 .85)

(0 .43 ,0 .01)

Chawk(0 .9 )

(0 .35 ,0 .00)

Tribhang i (0 .25)

(0 .25 ,0 .10)

MadhumitaRau t (0 .04)

(0 .05 ,0 .05) FBN(0 .25 ,0 .10 )

FBN(0 .05 ,0 .05 ) ChawkPos tu r e (1 .00)

(0 .95 ,0 .00)

FBN(0 .05 ,0 .05 )

Tribhang iStep(0.15)

(0 .75 ,0 .00)

MadhuFace(0 .05)

(1 .00 ,0 .00)

P ranam(0 .92)

(0 .00 ,0 .01)

P ranamPos tu re (1 .00)

(1 .00 ,0 .00)

P ranamDanceStep(0 .62)

(0 .50 ,0 .84)

FBN(0 .70 ,0 .24 )

Fig. 13 Bayesian network corresponding to the observation model of the concept Mangalacharan after FBN Learning has caused the structure

and parameters to be updated
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Fig. 14 Architecture of annotation generation framework

(in cyan color) are recognized to be present due to belief

propagation in the BN. Chawk pattern causes Odissi Dance

to be recognized. Presence of Pranam and BhumiPranam lead

to recognition of Mangalacharan concept which is further

confirmed by recognition of Odissi Dance concept in the

video. This concept-recognition is confirmed by the labels

that the domain experts had provided for the test Odissi

dance video. Thus FBN learning has led to an improvement

in concept-recognition as in the basic ontology, only one

abstract concept Odissi Dance was recognized in the video.

6.3.3 Semantic annotation generation

An important contribution of our ontology learning is

the attachment of conceptual annotation tomultimedia data

belonging to a domain, thus preserving its background

knowledge and enhancing the usability of this data through

digital access. Figure 14 shows the architecture of our Anno-

tation Generation framework. It consists of 5 functional com-

ponents. The basis of this whole framework is the MOWL

ontology created from domain knowledge, enriched with

multimedia data and then refined with learning from anno-

tated examples of the domain. The most important compo-

nent of this process is the Concept-Recognizer. The task of

this module is to recognize the high-level semantic concepts

in multimedia data with the help of low-level media-based

features. OMs for the high-level concepts selected by the

curator of the collection, are generated from the MOWL

ontology by the MOWL Parser and given as input to this

module. Low-level media features (SIFT features, Spatio-

temporal interest points, MFCC features, etc.) are extracted

from the digital artefacts which can be in different formats

(image, audio, video), and provided to the Concept Recog-

nizer by Media Feature Extractor. Media Pattern Classi-

fiers, trained by feature vectors extracted from the training set

of multimedia data, help detect the media patterns (objects,

shapes, postures, actions, music, etc.) in the digital artefacts.

Some of these classifiers are detailed in our work [13]. In

initial stages of building the ontology, data are labelled with

the help of manual annotations, provided by the domain

experts in XML format.

To recognize concepts in a new video of ICD, evidence

is gathered at the leaf nodes, as different media features are

recognized or classified in the video by the media classifiers.

If evidence at a node is above a threshold, the media feature

node is instantiated. These instantiations result in belief prop-

agation in the Bayesian network, and posterior probability at

Table 1 Table to show high-level annotation results using basic and FBN learnt ontology

Concept Basic FBN

Correct Miss False Precision Recall Correct Miss False Precision Recall

Pranam 43 10 23 0.65 0.81 55 8 13 0.80 0.87

Krishna Role 53 35 10 0.84 0.60 73 10 15 0.83 0.88

Mangalacharan Dance 23 36 13 0.64 0.39 53 14 5 0.91 0.79

Yashoda Role 7 2 1 0.87 0.77 5 3 2 0.71 0.63

Carnatic Music 92 10 3 0.97 0.90 97 5 3 0.97 0.95

Battu Dance 15 3 12 0.55 0.83 22 4 4 0.85 0.85

Adi Taal 52 12 20 0.72 0.81 54 18 12 0.82 0.75

Vanshika Chawla 22 5 3 0.88 0.81 27 2 1 0.96 0.93

Madhumita Raut 11 10 12 0.48 0.52 22 2 9 0.71 0.92

Naughty Krishna 6 3 5 0.54 0.67 5 4 5 0.50 0.55

Group Dance 12 13 9 0.57 0.48 27 3 4 0.87 0.90

Solo Dance 26 13 18 0.59 0.66 41 8 8 0.84 0.84

Krishna Sakhi Theme 1 2 3 0.25 0.33 2 1 3 0.40 0.67

Mahabharat Theme 7 15 3 0.70 0.32 15 3 7 0.68 0.83
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the associated concept nodes is computed. After belief prop-

agation, these nodes have high posterior probability. As they

get instantiated, we find high belief for the existence of other

high-level abstract nodes. Conceptual annotations are gener-

ated and attached to the video through Semantic annotation

generation. Results for some of the conceptual annotations

generated for the ICD domain using the basic ontology and

then the FBN learnt ontology are shown in Table 1. On an

average, we see an improvement in Precision and Recall from

the FBN learnt ontology over the results from the basic ontol-

ogy.

7 Concluding remarks

In this paper, we have presented a technique by which the

knowledge obtained to construct an ontology from a domain

expert can be fine-tuned by applying learning from real-world

examples belonging to the domain. An ontology refined in

this manner is a better structured, more realistic model of the

domain that it represents. In this paper, we have introduced a

novel technique to populate an intangible heritage collection

of videos in a scholarly domain like Indian classical dance,

in order to provide a flexible, ontology-driven access to the

users of the domain. The ontology learnt from video exam-

ples represents a domain more attuned to the real-world data.

The Bayesian network learning technique that we have used

allows us to learn new structure as well as the parameters of

the Bayesian network. The ontology learnt in this manner not

only has a more refined structure as is proved in experiments

done in this paper, but also has more accurate conditional

probabilities encoded in the CPTs attached to its concepts

and media-based nodes.
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