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Abstract

A numerical technique is presented for constructing an approximation of the weak Pareto
front of nonconvex multi-objective optimization problems, based on a new Tchebychev-type
scalarization and its equivalent representations. First, existing results on the standard Tcheby-
chev scalarization, the weak Pareto and Pareto minima, as well as the uniqueness of the op-
timal value in the Pareto front, are recalled and discussed for the case when the set of weak
Pareto minima is the same as the set of Pareto minima, namely, when weak Pareto minima
are also Pareto minima. Of the two algorithms we present, Algorithm 1 is based on this
discussion. Algorithm 2, on the other hand, is based on the new scalarizations incorporating
rays associated with the weights of the scalarization in the value (or objective) space, as con-
straints. We prove two relevant results for the new scalarization. The new scalarizations and
the resulting Algorithm 2 are particularly effective in constructing an approximation of the
weak Pareto sections of the front. We illustrate the working and capability of both algorithms
by means of smooth and nonsmooth test problems with connected and disconnected Pareto
fronts.

Key words: Multi-objective optimization, Pareto front, efficient set, Tchebychev
scalarization, numerical methods, nonconvex optimization, nonsmooth optimiza-
tion.

1 Introduction and Scalarization Techniques

We consider the following multi-objective optimization problem.

(P) min
x∈X

(f1(x), . . . , fp(x)) ,

where X ⊂ IRn, and the objective functions fi : IRn → IR, i = 1, . . . , p, are continuous. Note
that fi can in general be nonsmooth and nonconvex. There are two main solution concepts
associated with Problem (P), namely the Pareto minimum and the weak Pareto minimum. A
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point x∗ ∈ X is said to be a Pareto minimum if there exists no x ∈ X such that f(x) �= f(x∗)
and

fi(x) ≤ fi(x
∗) , for all i = 1, . . . , p .

On the other hand the vector x∗ ∈ X is said to be a weak Pareto minimum if there exists no
x ∈ X such that

fi(x) < fi(x
∗) , for all i = 1, . . . , p .

The set of all objective function values at the Pareto and weak Pareto minima is said to be
the Pareto front (or efficient set) of Problem (P) in the objective value space.

For computing a solution of the nonconvex multi-objective optimization problem (P), the
following single-objective problem (i.e. scalarization) is often considered [23].

(Pw) min
x∈X

max{w1 (f1(x) − u∗
1), . . . , wp (fp(x) − u∗

p)} ,

where wi, i = 1, . . . , p, are referred to as weights, and u∗
i , i = 1, . . . , p, are the respective

utopian objective values. A utopian objective vector u∗ associated with Problem (P) consists
of components u∗

i given as u∗
i = f∗

i − εi where εi > 0 for all i = 1, . . . , p and f∗
i is the optimal

value of the optimization problem,

(Pi) min
x∈X

fi(x) .

Let xi be a minimizer of Problem (Pi). Then f∗
i = fi(xi), i = 1, . . . , p.

Problem (Pw) is referred to as the weighted Tchebychev problem (or Tchebychev scalariza-

tion) because of the weighted Tchebychev norm maxi |wi (fi(x)− u∗
i )| = maxi wi (fi(x)− u∗

i )
appearing in the cost.

The following result is well-known.

Theorem 1 (Miettinen [23, Theorems 3.4.2 and 3.4.5]) The point x∗ is a weak Pareto min-
imum of (P) if, and only if, x∗ is a solution of (Pw) for some w1, . . . , wp > 0.

Theorem 1 lays the ground for an approximate construction of the Pareto front: One solves
Problem (Pw) with a range of values for the weights, w1, . . . , wp, and “hopes” to generate
points giving a good approximation of the Pareto front.

There has been a great deal of effort by the researchers in the area (especially in recent
years) for developing methods to generate an approximation of the Pareto front, see e.g.
[1, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 22, 24, 25, 27, 29, 30]. In most of these works, various
types of scalarization are considered (notably except in [8, 14, 18, 15, 24, 27]), and one of the
main concerns in these efforts is to get a more-or-less uniform distribution in the value space
of the points found by solving the single-objective problem (or scalarization).

The following result from [26], which we re-word for our purposes and setting, leads to an
interesting geometric interpretation.

Theorem 2 (Ogryczak [26, Theorem 1]) Suppose that the point x∗ is a Pareto minimum of
Problem (P) such that

w1 (f1(x
∗) − u∗

1) = · · · = wp (fp(x
∗) − u∗

p) , (1)

for some w1, . . . , wp > 0. Define the optimal value vector (f1, . . . , fp) := (f1(x
∗), . . . , fp(x

∗)).

Then (f1, . . . , fp) = (f1(x), . . . , fp(x)), where x is a solution of Problem (Pw) for the same
w1, . . . , wp, is the unique optimal value vector.
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Note that
w1 (f1 − u∗

1) = · · · = wp (fp − u∗
p) , (2)

where f1,. . . , fp are the coordinates of the value space, represents a ray, i.e. a line segment,
with direction (1/w1, . . . , 1/wp), emanating from the utopia point (u∗

1, . . . , u
∗
p). Let f =

(f1, . . . , fp) and v = (1/w1, . . . , 1/wp). Then a parametric equation for the ray can simply be
written as

f = t v + u∗ , t ≥ 0 . (3)

Theorem 2, combined with Theorem 1, tells us that if the ray given by (1) intersects
the Pareto front for some given weights w1, . . . , wp, and if the point at the intersection is a
Pareto minimum (but not only a weak Pareto minimum), then a solution of Problem (Pw)
yields the intersection point on the Pareto front. This result is useful in generating a good
approximation of the Pareto front under a special case: In the case when the weak Pareto
minima in the front are also Pareto minima, one can use a grid of values for the weights,
w1, . . . , wp, for a “more-or-less evenly spaced” rays and an appropriate choice of the utopia
point as a reference point. This idea forms a basis of the methods presented by [9, 10, 11, 25]
recently. Our approach differs from these earlier works in that we propose a new scalarization
(PRw) (see below) with which it is possible to construct an approximation of weak Pareto
fronts. We explain a few other advantages of the new scalarization when we introduce it, in
sequel.

Note that Problem (Pw) can equivalently be written, by using a standard trick from math-
ematical programming, as

(P1w)

⎧
⎨

⎩

min
x∈X

γ

subject to wi (fi(x) − u∗
i ) ≤ γ , i = 1, . . . , p .

Problem (P1w) is referred to as goal-attainment method [23, 25], as well as Pascoletti-Serafini

(P-S) scalarization [9, 10, 11]. With Problem (P1w), one has the advantage over Problem (Pw)
in that, in the case when Problem (P) is smooth, Problem (P1w) is also smooth, for which
powerful numerical techniques can be employed to find a solution. However this comes at the
expense of p additional constraints and one extra (slack) decision variable, γ, when compared
with Problem (Pw). Therefore, in the case when Problem (P) is nonsmooth, Problem (Pw)
should be preferred.

Never the less, it is interesting to note that, in view of Equation (1) and the discussion
following Theorems 1 and 2 above, in the case when the set of weak Pareto points is the same
as the set of Pareto points in the front, one can re-write Problem (P1w) simply as

(P2w)

⎧
⎨

⎩

min
x∈X

γ

subject to wi (fi(x) − u∗
i ) = γ , i = 1, . . . , p .

Problem (P2w) is referred to as the modified Pascoletti-Serafini scalarization in [9].

In the case when the set of weak Pareto points is not the same as the set of Pareto points in
the front, i.e., when there are weak Pareto minima in the front which are not Pareto minima,
there is no guarantee anymore that the weak Pareto minimum found by solving Problem (Pw),
or by solving Problems (P1w) and (P2w), is at the intersection of the ray associated with the
chosen weights. This is detrimental to finding a good spread of points in the Pareto front,
which is later illustrated by means of a test problem in Figure 2(a). Therefore it is necessary
to add the expression for the ray as a constraint to the scalarization.
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In this paper we propose a new Tchebychev-type scalarization, which is the scalarization
(Pw) subject to the ray associated with the choice of weights of the scalarization and a utopia
point as the reference point. Namely, we propose

(PRw)

⎧
⎨

⎩

min
x∈X

max
1≤i≤p

wi (fi(x) − u∗
i ) ,

subject to wi (fi(x) − u∗
i ) − wi+1 (fi+1(x) − u∗

i+1
) = 0 , i = 1, . . . , p − 1 .

Note that the (p − 1) equality constraints here represent a ray as in (2). We call this new
scalarization Tchebychev scalarization along rays.

For completeness and comparison purposes, we present two algorithms in the paper: Algo-
rithm 1 implements the results in Theorems 1 and 2 using the scalarization (Pw); Algorithm 2
implements the result in Theorem 4 using the scalarization (PRw). We apply both algorithms
to smooth and nonsmooth problems with connected and disconnected Pareto fronts.

It is important to note that the modified P-S scalarization was introduced in [9] more from
a theoretical view point rather than a practical view point. Our approach is largely motivated
from a practical point of view. Furthermore, the version of the modified P-S problem that
we state in our paper as (P2w) is a special instance of the family of parametric problem
introduced in [9] which is denoted as (SP (a, r)). In our case a = u∗ the vector consisting of
utopian values and r = (1/w1, ...1/wp). Of course we have chosen wi > 0 for all i.

In [9] no relation between weak minimal points and the solutions of the modified P-S
scalarization problem is given. It is however not apparent that there is any relationship
between the weak Pareto points and the solutions of the modified P-S scalarization scheme.
The reason for this might be as follows. In the original P-S scalarization, the ordering cone of
the multi-objective problem plays a major role. In fact, the assumption that the ordering cone
has a non-empty interior is significant in showing that the solution of the P-S scalarization
problem corresponds to a weak Pareto point. See [9, Chapter 2] for details. However in
the modified P-S scheme we replace the ordering cone with the cone {0}. This cone has no
interior and this seems, at this moment, to be the factor stopping us from relating the weak
Pareto points with the solution of the modified P-S problem.

In [9] it has been shown that a Pareto minimum point corresponds to the solution of the
modified P-S scalarization problem under certain conditions which might not be so easy to
verify in practice. To implement the approach in [9] using the modified P-S scheme, one
needs to consider a hyperplane in the image space and then have rays originating from each
point chosen in the hyperplane. These rays are required to intersect the Pareto front. In our
approach we do not require constructing a hyperplane, and we can locate the weak Pareto
minimum points quite easily in most cases, for example when the Pareto front is connected.

The rest of our paper is organized as follows. In Section 2, we prove two results about the
new Tchebychev scalarization along rays, namely, Theorems 3 and 4. In Section 3, we present
Algorithms 1 and 2. In Section 4, we illustrate both algorithms on three test problems and
provide discussion. In Section 5, we make conclusions and point to future directions which
might be interesting to pursue.

2 Results on Tchebychev Scalarization Along Rays

In this section we prove two results in Theorems 3 and 4 concerning the new Tchebychev
scalarization along rays. In particular, Theorem 4 lays the ground for Algorithm 2.

The following theorem is analogous to the first part of Theorem 1 (i.e. Theorem 3.4.5 in
[23]).
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Theorem 3 If x∗ is a weak Pareto minimum of (P) then x∗ is a solution of (PRw) for some
w1, . . . , wp > 0.

Proof. Let x∗ ∈ X be a weak Pareto minimum. Let

wi =
β

fi(x∗) − u∗
i

, i = 1, . . . , p , (4)

where β is some fixed positive number. With this choice of wi, x∗ ∈ X satisfies the equality
constraints in (PRw). Suppose that x∗ ∈ X is not a solution of (PRw). Then there exists
x̂ ∈ X satisfying the equality constraints such that

max
1≤i≤p

wi (fi(x̂) − u∗
i ) < max

1≤i≤p
wi (fi(x

∗) − u∗
i ) = β

i.e.
wi (fi(x̂) − u∗

i ) < β , for all i = 1, . . . , p .

Substituting the weights in (4), one gets

β

fi(x∗) − u∗
i

(fi(x̂) − u∗
i ) < β ,

and, after re-arranging,
fi(x̂) < fi(x

∗) for all i = 1, . . . , p , (5)

because (fi(x
∗) − u∗

i ) and β are positive. Inequality (5) is a contradiction with the fact that
x∗ is a weak Pareto minimum. ✷

Remark 1 Note that the converse of Theorem 3 is not true, unless the Pareto front is
connected. This can be illustrated as follows. Consider a bi-objective problem. Suppose that
x∗

1 and x∗
2 are solutions of (P1) and (P2), respectively, and let f∗

1 := f1(x
∗
1), f2 := f2(x

∗
1),

f∗
2 := f2(x

∗
2), and f1 := f1(x

∗
2). The Pareto front is connected if and only if the line segment

given by f2 = u∗
2 + α(f1 − u∗

1) in the value space intersects the Pareto front for all α ∈
[αmin, αmax], where

αmin = arctan

(
f∗
2 − u∗

2

f1 − u∗
1

)
and αmax = arctan

(
f2 − u∗

2

f∗
1
− u∗

1

)
, (6)

see Figure 1(a). Suppose that the Pareto front is not connected. Then there exists u∗
1, u∗

2,
w1 and w2 such that the line segment defined by

w1 (f1(x) − u∗
1) − w2 (f2(x) − u∗

2) = 0 , for all x ∈ X ,

in the objective space does not intersect the Pareto front - see Figure 1(b). Therefore a
solution of (PRw) with this equality constraint is not a Pareto minimum.

We can prove the converse of Theorem 3, if we require the Pareto front to be connected.

Theorem 4 Suppose that the Pareto front associated with Problem (P) is connected. If x∗

is a solution of (PRw) for some w1, . . . , wp > 0, then x∗ is a weak Pareto minimum of (P).

Proof. Since x∗ is a solution of (PRw) for some w1, . . . , wp > 0,

wi (fi(x
∗) − u∗

i ) − wi+1 (fi+1(x
∗) − u∗

i+1) = 0, i = 1, . . . , p − 1 ,
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����

����

��

f1

f2 (f∗
1 , f2)

(f1, f
∗
2 )

(u∗
1, u

∗
2) f2 = u∗

2 + α(f1 − u∗
1)

αmin
αmax

(a) A connected Pareto front

����

����

��

f1

f2 (f∗
1 , f2)

(f1, f
∗
2 )

(b) A disconnected Pareto front

Figure 1: Connected and Disconnected Pareto fronts for the biobjective case, and the ray ema-
nating from a utopia point – see Remark 1.

holds. Then one can write down the equalities in (2) which in turn define in the value space
the ray f = u∗ + t v, t ≥ 0, in (3). So f(x∗) = (f1(x

∗), . . . , fp(x
∗)) is a point in the ray, for

some t ≥ 0.

We claim that x∗ solves (P), i.e. x∗ is a weak Pareto minimum. In other words, we claim
that f(x∗) is an intersection point of the ray with the Pareto front.

Assume on the contrary that x∗ is not a weak Pareto minimum. Then, because the Pareto
front is connected, there exists x̂ ∈ X such that f(x̂) is an intersection point of the ray with
the Pareto front and that

fi(x̂) − u∗
i < fi(x

∗) − u∗
i for all i = 1, . . . , p .

Since w1, . . . , wp > 0, we have

wi (fi(x̂) − u∗
i ) < wi (fi(x

∗) − u∗
i ) for all i = 1, . . . , p .

Hence
max
1≤i≤p

wi (fi(x̂) − u∗
i ) < max

1≤i≤p
wi (fi(x

∗) − u∗
i ) .

This contradicts the fact that x∗ solves (PRw). ✷

3 Two Algorithms

Here we provide two algorithms for constructing an approximation of the Pareto front of
biobjective problems. In each algorithm, we generate a grid of weights in a similar way they
are generated in [7, 9, 25]. The procedures we describe here can be generalized to three or
more objective cases by taking the methods of weight grid generation described in [7, 9, 25],
as a basis, which should be considered as future work.

Algorithm 1 uses the results given in Theorems 1 and 2, in that a solution of Problem (Pw)
gives a unique point in the Pareto front in the value (i.e. objective) space. Although Algo-
rithm 1 does not utilize rays, if the solution of Problem (Pw) is Pareto (or weak Pareto which
is also Pareto), then the point found is along the ray associated with the weights chosen,
in the value space. If the solution of Problem (Pw) is only weak Pareto, but not Pareto,
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Theorem 1 still guarantees that the solution point will be in the Pareto front, albeit Theo-
rem 2 will no longer ensure that the solution point will be in the ray associated by the chosen
weights. The latter situation can result in a non-uniform spread of the points found, as later
depicted in Figure 2(a).

To address the difficulties of Algorithm 1 metioned above, we propose Algorithm 2, which
uses the result given in Theorem 4: If a ray associated with the chosen weights intersects the
Pareto front, Problem (PRw) yields a point in the Pareto front in the value space, even if the
solution point is only a weak Pareto minimum.

Algorithm 2 uses rays formed by a range of values of the weights, just like Algorithm 1 does.
In fact, Steps 0.0–k.1 of both algorithms, for varying the values of the weights corresponding
to a range of rays, are identical. In principle, there is no way to know in advance if a ray
intersects the Pareto front, especially in the case when the Pareto front is disconnected. So,
a solution of Problem (PRw) (if it exists) may not be a Pareto minimum. We eliminate such
solutions by carrying out a “weeding out” procedure in the final step of Algorithm 2.

Algorithm 1 (Tchebychev)

Step 0.0 (Initialization) Choose the utopia parameters, ε1, ε2 > 0. Set the number of
discrete points, (N + 1), in the Pareto front. Set k := 1.

Step 0.1 (Boundary of the front)

(a) Find x that solves Problem (P1). Let f∗
1 := f1(x) and f2 := f2(x).

Mark a boundary point in the Pareto front: f
0

:= (f1(x), f2(x))

(b) Find x that solves Problem (P2). Let f1 := f1(x) and f∗
2 := f2(x).

Mark a boundary point in the Pareto front: f
N

:= (f1(x), f2(x)).

Step 0.2 (Utopia point) Set u∗ := (u∗
1, u

∗
2) with u∗

i := f∗
i − εi, i = 1, 2.

Step 0.3 (Range of angles for the rays) Compute αmin and αmax using (6). Set the
increment, ∆α := (αmax − αmin)/N .

Step k.1 (Angle and weights for a ray) Set α := αmin + k ∆α. Set w1 := sin α and
w2 := cos α.

Step k.2 (A Pareto minimum) Find x that solves Problem (Pw).

Assign a point in the Pareto front: f
k

:= (f1(x), f2(x)).

Step k.3 (Stopping criterion) If k = N then STOP. Otherwise, set k := k + 1 , and go
to Step k.1.

Algorithm 2 (Tchebychev Along Rays)

Step 0.0–Step k.1 Do the same as in Steps 0.0–k.1 of Algorithm 1.

Step k.2 (A candidate for a Pareto minimum) Find x that solves Problem (PRw).

Assign a candidate point for the Pareto front: f
k

:= (f1(x), f2(x)).

Step k.3 (Completion of cycle) If k = N then go to Step (N + 1). Otherwise, set
k := k + 1 , and go to Step k.1.

Step (N + 1) (Weeding out non-Pareto points) For each i = 0, . . . , N , if there exists

j = 0, . . . , N such that f j
1

< f i
1 and f j

2
< f i

2, then eliminate f
i
.
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In either algorithm, in order to get a good spread of points in the Pareto front, it would
be useful to choose the weights w1, w2 > 0 uniformly (e.g. over a grid) and make the utopia
point (u∗

1, u
∗
2) far enough from the ideal point, and thus, far from the front (by choosing the

utopia parameters, ε1, ε2 > 0, large enough). Numerical illustrations in the next section will
clarify this comment further.

In Step k.2 of both Algorithms 1 and 2, it is necessary to employ a nonsmooth numerical
technique. In the case the (original) multi-objective problem is nonsmooth, a nonsmooth
numerical method would also be necessary for Step 0.1. In the application of Algorithms 1
and 2 to the test problems that we study in the next section, we have used the deflected
subgradient method [3, 4, 5, 6]. In solving the subproblems of the deflected subgradient
method, we have used Matlab’s fminsearch which implements the Nelder-Mead method
[21], as well as the freeware SolvOpt [19] which implements Shor’s r-Algorithm [28].

It should be pointed out that if the approximation of the front is not done over a sufficiently
fine grid, i.e., if the resulting approximation points are not close enough to one another, then
the weeding out procedure may not eliminate some of the non-Pareto points. Never the less,
in the numerical experiments presented in the next section, the weeding out procedure seems
to be serving the purpose reasonably well.

Another approach which has similar geometric features to those of ours is the Normal

Boundary Intersection (NBI) method due to Das and Dennis [7]. Just like our approach,
the NBI method finds a point in the lower-boundary of the feasible objective set and may
generate a point which is not a Pareto or weak Pareto minimum. Thus the weeding process
has to be common to both. There are however significant differences. The multiobjective
optimization problem that the NBI approach studies has a compact feasible set, although
theoretically there is no such requirement in our case. We only require the feasible set to
be closed. Our method and the NBI method fundamentally differ in the way they find the
lower boundary of the feasible objective space. In the NBI approach one first constructs a
set called CHIM (convex hull of individual minima), and then moves from a point in CHIM,
along a direction normal to the set CHIM, towards the lower part of the boundary of the
convex objective space. In our case, however, geometrically speaking, we find a point of the
lower boundary of the objective feasible set by using rays emanating from a utopia point. The
subproblems, or the scalarization used, in the two methods, also differ: while we employ a new
scalarization, called Tchebychev scalarization along rays, the NBI method uses a scalarization
akin to (P2w).

4 Numerical Illustration

In this section we illustrate numerical implementations of Algorithms 1 and 2 we presented
in the previous section on three test problems.
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4.1 Problem 1

A test problem introduced in [29] has also been used in many other studies – see e.g. [8, 9, 10].
We modify this problem by adding a nonsmooth (third) constraint as follows.

min (x1, x2)

subject to −x2
1 − x2

2 + 1 + 0.1 cos(16 arctan(x1/x2)) ≤ 0 ,
(x1 − 0.5)2 + (x2 − 0.5)2 − 0.5 ≤ 0 ,
0.2 − max{|x1 − 0.6|, |x2 − 0.7|} ≤ 0 ,
0 ≤ x1, x2 ≤ π .

As a result of the addition of the nonsmooth constraint, the Pareto front has a portion
where the weak Pareto points are not Pareto. By devising this nonsmooth version of the
problem, which has not been studied elsewhere, we would like to illustrate the effectiveness
of Algorithm 2.

In both Algorithms 1 and 2, the utopia parameters are taken to be ε1 = 5 and ε2 = 5. So
the utopia point, u∗ ≈ (−4.9583, −4.9583). We set N = 30. At portions of the Pareto front
where the points are either Pareto or weak Pareto which are also Pareto, that portion of the
front can be obtained by Algorithm 1 with a nice spread of points, as shown in Figure 2(a).
It is worth noting that these points coincide with those obtained along rays by Algorithm 2,
which are depicted in Figure 2(b). However, the portion of the front where weak Pareto
points are not Pareto cannot be generated well by Algorithm 1, as can be seen in Figure 2(a).
Algorithm 2 can generate the complete portion with weak Pareto points, as illustrated in
Figure 2(b) before weeding out. Figure 2(c) depicts an approximation of the front generated
by Algorithm 2, after weeding out. To emphasize the capability of Algorithm 2 further,
we also construct an approximation of the Pareto front with twice as many rays, i.e. with
N = 60, as shown in Figure 2(d).

It should be noted that because the utopia (or reference) point is far enough from the
front, the rays, although emanating from a single point, appear to be almost parallel. This,
together with equal increments in the weights, helps a more-or-less uniform spread of the
points computed.

4.2 Problem 2

We consider another problem with a disconnected Pareto front, which is taken from [27]. This
problem was also used in [15] to illustrate a technique for finding Pareto points without using
a scalarization. We provide the problem as an example where Algorithm 2 can help even in
the case when all weak Pareto points in the front are also Pareto points (see Figure 3(c) for
the resulting “full” front) where Algorithm 1 was supposed to do the job, but could not.

In both algorithms, the utopia parameters are taken as ε1 = 10 and ε2 = 10. So the
utopia point, u∗ ≈ (−3.1666, −10.000). Also N = 30. According to the underlying theory
Algorithm 1 is expected to do the job; however because of the large jump from one portion
of the Pareto front to the other, the initial guess for the nonsmooth solver within the de-
flected subgradient method is not good enough to find a global minimum of Problem (Pw)
in Step k.2. As a result the whole of the second (upper) portion of the front is missed -
see Figure 3(a). On the other hand, in Step k.2 of Algorithm 2, at least local Pareto points
are found consecutively, leading to a “discovery” of the second (upper) portion of the front -
see Figure 3(b). Consequently, the weeding out procedure yields the desired Pareto front as
shown in Figure 3(c). The results also illustrate that the spread of the points found in the
front is more-or-less uniform. In both [27] and [15], where no scalarization is used for finding
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(a) Weak Pareto minima found by Alg. 1
(using no rays)
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(b) Weak Pareto and non-Pareto points
found in Alg. 2 (rays shown by dashed lines)
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(c) Weak Pareto points after weeding

out non-Pareto points along rays
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(d) A refined approximation of the front
using Alg. 2 with N = 60

Figure 2: An illustration of improvement of an approximation of the Pareto front for Problem 1,
from the set in (a) to the set in (c), with N = 30, and a refinement in (d) with N = 60.
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found in Alg. 2 (rays shown by dashed lines)
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(c) Weak Pareto points after weeding

out non-Pareto points along rays
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(d) A refined approximation of the front
using Alg. 2 with N = 60

Figure 3: An illustration of improvement of an approximation of the Pareto front for Problem 2,
from the set in (a) to the set in (c), with N = 30, and a refinement in (d) with N = 60.

Pareto points, no uniformity in the points found in the front can be ensured. Finally, we
present a refined approximation of the front in Figure 3(d) found by Algorithm 2, where we
have taken twice as many rays, namely we have set N = 60.

4.3 Problem 3

We consider a problem from [20] as a case when Algorithms 1 and 2 work equally well. The
same problem was also studied in [8].

In both algorithms, the utopia parameters are taken as ε1 = 1 and ε2 = 45. So the utopia
point, u∗ ≈ (−21.000, −56.627). Also N = 30. Note that ε1 and ε2 have different orders of
magnitudes; however, the chosen values help in getting an even spread of the points in the
Pareto front - see Figure 4.
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(a) Weak Pareto minima found by Alg. 1
(using no rays)
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(b) Weak Pareto and non-Pareto points
found in Alg. 2 (rays shown by dashed lines)
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(d) A refined approximation of the front
using Alg. 2 with N = 60

Figure 4: An illustration of the similar fronts obtained for Problem 3 by Algorithms 1 and 2. A
refinement in (d) with N = 60 is also shown.

All weak Pareto points are also Pareto points. So both Algorithms 1 and 2 give more-or-
less the same front - see Figures 4(a) and (c). In fact, Algorithm 1 in this case accentuates
the weak Pareto points more, because, for any values of weights corresponding to rays which
do not intersect the front, Algorithm 1 finds a weak Pareto point at the boundary of a
disconnected front. Algorithm 1 do not seem to have the problem it had for Problem 2,
because the gaps between the disconnected portions of the front do not appear to be so large.

Finally, we present a refined approximation of the Pareto front with twice as many rays,
i.e. with n = 60, in Figure 4(d). Accuracy and the uniformity of the points depicted in the
figure looks to be better than those presented in [8].

5 Conclusion

We have presented a new scalarization technique, called Tchebychev scalarization along rays,
and the associated Algorithm 2. We have also provided Algorithm 1, which is based on the
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classical Tchebychev scalarization. Algorithm 1 is effective for problems with a Pareto front
where the set of weak Pareto points is the same as the set of Pareto points. Algorithm 2 is
based on the new Tchebychev scalarization along rays (in the value space) associated with the
weights of the scalarization. Although we have presented Algorithms 1 and 2 for biobjective
problems, they can be generalized to problems with more than two objectives, using the
techniques employed in this paper, as well as those given in [7, 9, 25], as a basis. It would be
of particular interest to apply the techniques developed in this paper to nonconvex optimal
control problems along lines similar to those given in [2] for convex optimal control problems.
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