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AN FPT ALGORITHM FOR ELIMINATION DISTANCE TO BOUNDED
DEGREE GRAPHS∗

AKANKSHA AGRAWAL† , LAWQUEEN KANESH ‡ , FAHAD PANOLAN § , M. S. RAMANUJAN¶, AND

SAKET SAURABH‖

Abstract. In the literature on parameterized graph problems, there has been an increased effort in recent
years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator
to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica, 2016] introduced the notion of
elimination distance and showed that deciding whether a given graph has elimination distance at most k to any
minor-closed class of graphs is fixed-parameter tractable parameterized by k [Algorithmica, 2017]. They showed that
Graph Isomorphism parameterized by the elimination distance to bounded degree graphs is fixed-parameter tractable
and asked whether determining the elimination distance to the class of bounded degree graphs is fixed-parameter
tractable. Recently, Lindermayr et al. [MFCS 2020] obtained a fixed-parameter algorithm for this problem in the
special case where the input is restricted to K5-minor free graphs.

In this paper, we answer the question of Bulian and Dawar in the affirmative for general graphs. In fact, we
give a more general result capturing elimination distance to any graph class characterized by a finite set of graphs
as forbidden induced subgraphs.

1. Introduction. A popular methodology for studying the parameterized complexity of prob-
lems is to consider parameterization by distance from triviality [16]. In this methodology, the idea
is to try and lift the tractability of special cases of generally hard computational problems, to
tractability of instances that are “close” to these special cases (i.e., close to triviality) for appropri-
ate notions of “distance from triviality”. This way of parameterizing graph problems has led to a
rich collection of sophisticated algorithmic and lower bound machinery over the last two decades.

One direction in which this approach has been extended in recent years is by enhancing ex-
isting notions of distance from triviality by exploiting some form of structure underlying vertex
modulators rather than just the size bound. This line of exploration has led to the development
of several new notions of distance from triviality [12, 6, 7, 15, 14, 11]. Of primary interest to us in
this line of research is the notion of elimination distance introduced in [6]. Bulian and Dawar [6]
introduced the notion of elimination distance in an effort to define tractable parameterizations that
are more general than the modulator size for graph problems. We refer the reader to Section 2
for a formal definition of this parameter. In their work, they focused on the Graph Isomorphism
(GI) problem and showed that GI is fixed-parameter tractable (FPT) when parameterized by the
elimination distance to graphs of bounded degree. In follow-up work, Bulian and Dawar [7] showed
that deciding whether a given graph has elimination distance at most k to any minor-closed class of
graphs is fixed-parameter tractable parameterized by k (i.e., can be solved in time f(k)nO(1)) and
asked whether computing the elimination distance to graphs of bounded degree is fixed-parameter
tractable.

Recently, Lindermayr et al. [18] showed that computing elimination distance to bounded degree
graphs is fixed-parameter tractable when the input is planar. However their approach is specifically
adapted to planar graphs (in fact, more generally, K5-minor free graphs) and they note that their
approach does not appear to extend to general graphs. In this paper, we address the general
question and show that the problem is (non-uniformly) fixed-parameter tractable on general graphs.
In fact, we prove a more general result and obtain the result for elimination distance to graphs of
bounded degree as a consequence. Let F be a finite family of graphs. We say that a graph G is
F-free if G does not contain any induced subgraph isomorphic to a graph in F .
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Theorem 1.1. For every fixed finite family F of finite graphs and k ∈ N, there is an algorithm

AF
k that, given a graph G, runs in time f(k)·nO(1) for some function f and correctly decides whether

G has elimination distance at most k to the class of F-free graphs.

We remark that the exponent of n in the above running time is a constant depending on F
and independent of k. As a corollary (and with a slight modification of the above algorithms), we
obtain the following result for determining elimination distance to bounded degree graphs.

Corollary 1.2. For every k ∈ N, there is an algorithm Ak that, given a graph G and integer

d ∈ N, runs in time f(k, d) · nO(1) for some function f and correctly decides whether G has

elimination distance at most k to the class of graphs of degree at most d.

In the above statement, the exponent of n is a constant independent of both d and k.
Related work.. Hols et al. [17] recently presented a comprehensive study of the classic Vertex

Cover problem parameterized by the size of a smallest modulator to graphs that have bounded
elimination distance to specific hereditary graph classes. They provided an elegant (partial) char-
acterization of parameterizations that permit polynomial kernelizations for Vertex Cover. Bougeret
et al. [4] introduced a measure called bridge-depth and showed that a minor-closed family of graphs
F has bounded bridge-depth precisely when Vertex Cover admits a polynomial kernel parameter-
ized by the size of a modulator to F (subject to standard complexity theoretic hypotheses). The
notion of elimination distance [6] generalizes the notion of generalized treedepth introduced by
Bouland et al. [5] in an effort to combine the treedepth and max-leaf number parameters. Building
on [6] and extending the approach of combining width parameters (treedepth in the case of [6])
and modulator size, Ganian et al. [15] proposed a measure of distance to triviality for CSP that
depended on the treewidth of an appropriate graph defined on backdoor sets (these can be thought
of as a version of vertex modulators appropriate for use in solving ILP and CSP instances). That
is, they introduced a way of combining treewidth and modulator size into a single parameter that is
stronger than elimination distance. More recently, Eiben et al. [11] continued the line of research
into combining modulators and width parameters by studying this parameter in the context of
graph problems, where triviality is expressed in terms of bounded rankwidth.

2. Preliminaries. For an undirected graph G, we use n and m to denote |V (G)| and |E(G)|
respectively, unless mentioned otherwise. For X ⊆ V (G), G[X] denotes the graph with vertex set
X and the edge set {{x, y} ∈ E(G) | x, y ∈ X}. By G − X we denote the graph G[V (G) \ X].
Let v ∈ V (G). Then, by NG(v) we denote the set of neighbors of v in G, i.e., the set {u ∈ V (G) |
{u, v} ∈ E(G)}. By NG[v], we denote the closed neighborhood of v in G, i.e., NG(v)∪{v}. For a set
U ⊆ V (G), by NG(U) we denote the set ∪u∈UNG(u) \U , by NG[U ] we denote the set NG(U)∪U .
By degG(v), we denote the degree of vertex v in G, i.e., the number of edges incident on v in G.
We drop the subscript whenever the context is clear.

A path P = (v1, v2, · · · , vℓ) in G is a subgraph of G, where the set V (P ) = {v1, v2, · · · , vℓ} ⊆
V (G) is a set of distinct vertices and E(P ) = {{vi, vi+1} | i ∈ [ℓ − 1]} ⊆ E(G), where |V (P )| = ℓ

for some ℓ ∈ [|V (G)|]. The above defined path P is called as v1 − vℓ path. We say that the graph
G is connected if for every u, v ∈ V (G), there exists a u− v path in G. A connected component of
G is an inclusion-wise maximal connected induced subgraph of G. The set C(G) denotes the set
of connected components of G. For a tree T and vertices u, v ∈ V (T ), we denote the unique path
between u and v by PthT (u, v). A tree is called as a rooted tree if special vertex in tree is designated
to be the root. Let T be a rooted tree with root r ∈ V (T ). We say that a vertex v ∈ V (T ) \ {r} is
a leaf of T if the degT (v) = 1. Moreover, if V (T ) = {r}, then r is the leaf (as well as the root) of
T . A vertex which is not a leaf, is a non-leaf vertex. Let t, t′ ∈ V (T ) such that {t, t′} ∈ E(T ) and
t′ is not contained in t− r path in T , then we say that t is the parent of t′ and t′ is a child of t. A
vertex t′ ∈ V (T ) (t′ can possibly be the same as t) is a descendant of t, if in T − {parT (t)}, where
parT (t) is the parent of t, there is a t− t′ path. Note that when t = r, then T − {parT (t)} = T , as
the parent of r does not exist. (Every vertex in T is a descendant of r.) By descT (t), we denote
the set of all descendants of t in T . We drop the subscript T from parT (·) and descT (·), when the
context is clear. A rooted forest is a forest where each connected component is a rooted tree. For
a rooted forest F , a vertex v ∈ V (F ) that is not a root of any of its rooted trees is a leaf if it is
of degree exactly one in F . We denote the set of leaves in a rooted forest by Lf(F ). The depth,
denoted by depth(T ) of a rooted tree T is the maximum number vertices in a root to leaf path in
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T . The depth, denoted by depth(F ) of a rooted forest F is the maximum over the depths of its
rooted trees.

Definition 2.1 (Forest embedding). A forest embedding of a graph G is a pair (F, f), where
F is a rooted forest and f : V (G) → V (F ) is a bijective function, such that for each {u, v} ∈ E(G),
either f(u) is a descendant of f(v), or f(v) is a descendant of f(u). The depth of the forest
embedding (F, f) is the depth of the rooted forest F .1

Next, we recall the notion of elimination-distance introduced by Bulian and Dawar [6]. We
rephrase their definition and introduce notation that will facilitate our presentation.

Definition 2.2 (Elimination Distance and (η,H)-decompositions). Consider a family H of
graphs and an integer η ∈ N. An (η,H)-decomposition of a graph G is a tuple (X,Y, F, f : X →
V (F ), g : C(G[Y ]) → Lf(F )∪ {⊥}), where (X,Y ) is a partition of V (G) and F is a rooted forest of
depth η, such that the following conditions are satisfied:

1. (F, f) is a forest embedding of G[X],
2. each connected component of G[Y ] belongs to H, and
3. for a connected component C of G[Y ], a vertex v ∈ V (C), and an edge {u, v} ∈ E(G),

either u ∈ Y or f(u) is a vertex in the unique path in F from r to g(C), where r is the
root of the connected component in F containing the vertex g(C).2

We say that G admits an (η′,H)-decomposition if there is some η ≤ η′, for which there is an
(η,H)-decomposition of G. The elimination distance of G to H (or the H-elimination distance of
G) is the smallest integer η∗ for which G admits an (η∗,H)-decomposition.

We remark that when G is a connected graph, no component in C(G[Y ]) is mapped to ⊥ (i.e.,
g is indeed a function from C(G[Y ]) to Lf(F )).

Consider an (η,H)-decomposition D = (X,Y, F, f, g) of a graph G. We say that D is an
(η,H)-decomposition of G on forest F . We say that X is the interior part of D and Y is the

exterior part of D. For a leaf u ∈ Lf(F ), by P̂D

u we denote the path from u to r in the tree
T , where T is the tree rooted at r in F , containing u. Moreover, by PD

u , we denote the graph

G[{f−1(w) | w ∈ V (P̂D

u )}]. For a connected component C ∈ C(G[Y ]), by CD

ext
we denote the graph

G[V (C)∪{f−1(w) | w ∈ V (PthF (g(C), r))}], where r is the root of the component of F containing
g(C). (For the above notations we drop the superscript D, when the context is clear.)

For a graph G, the elimination distance of G to H = {({u}, ∅)} is the treedepth of G, denoted
by td(G). We use the following simple observation in a later section.

Observation 1. Let q be a positive integer and Hq be a family of graphs where each graph has

at most q vertices. If for a graph G, the elimination distance of G to Hq is η, then the treedepth

of G is at most η + q.

Consider a graph G, a non-empty set Q ⊆ V (G), and integers p, q ∈ N. We say that a
set A ⊆ V (G) such that G[A] is connected, is a (Q, p, q)-connected set if Q ⊆ A, |A| = p, and
|N(A)| ≤ q. The next proposition follows from Lemma 3.1 of [13].

Proposition 2.3. Consider a graph G, a non-empty set Q ⊆ V (G), and integers p, q ∈ N.

The number of (Q, p, q)-connected sets in G is at most 2p+q. Moreover, there exists an algorithm

which runs in 2p+q · nO(1) time and enumerates all (Q, p, q)-connected sets in G′.

Unbreakability.. To formally introduce the notion of unbreakability, we rely on the definition
of a separation:

Definition 2.4. [Separation] A pair (X,Y ) where X ∪ Y = V (G) is a separation if E(X \
Y, Y \X) = ∅. The order of (X,Y ) is |X ∩ Y |.

Roughly speaking, a graph is breakable if it is possible to “break” it into two large parts by
removing only a small number of vertices. Formally,

Definition 2.5. [(s, c)-Unbreakable graph] Let G be a graph. If there exists a separation

(X,Y ) of order at most c such that |X \ Y | ≥ s and |Y \ X| ≥ s, called an (s, c)-witnessing
separation, then G is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

1Sometimes we slightly abuse the notation for simplicity, and say that, for every β ≥ α, (F, f) is a forest
embedding of depth β, where α is the depth of F .

2If g(C) = ⊥, then u must belong to Y .
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Counting Monadic Second Order Logic. . The syntax of Monadic Second Order Logic (MSO)
of graphs includes the logical connectives ∨, ∧, ¬, ↔, ⇒, variables for vertices, edges, sets of
vertices and sets of edges, the quantifiers ∀ and ∃, which can be applied to these variables, and five
binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable;
2. d ∈ D, where d is an edge variable and D is an edge set variable;
3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that

the edge d is incident to u;
4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v are

adjacent;
5. equality of variables representing vertices, edges, vertex sets and edge sets.

Counting Monadic Second Order Logic (CMSO) extends Monadic Second Order Logic (MSO)
by including atomic sentences testing whether the cardinality of a set is equal to q modulo r, where
q and r are integers such that 0 ≤ q < r and r ≥ 2. That is, CMSO is MSO with the following
atomic sentence: cardq,r(S) = true if and only if |S| ≡ q (mod r), where S is a set. We refer
to [2, 8, 9] for a detailed introduction to CMSO.

We will crucially use the following result of Lokshtanov et al. [19] that allows one to obtain a
(non-uniform) FPT algorithm for CMSO-expressible graph problems by designing an FPT algo-
rithm for the problem on unbreakable graphs.

Proposition 2.6 (Theorem 1, [19]). Let ψ be a CMSO sentence and let d > 4 be a positive

integer. For all c ∈ N, there exists s ∈ N such that if there exists an algorithm that solves CMSO[ψ]
on (s, c)-unbreakable graphs in time O(nd), then there exists an algorithm that solves CMSO[ψ]
on general graphs in time O(nd).

3. The algorithm for k-Elimination Distance to HF . In the rest of the paper, we fix
the family F and let d denote the maximum taken over the number of vertices in the graphs in F .
Recall that HF denotes the family of all F-free graphs. In the k-Elimination Distance to HF

problem, the input is a graph G and the goal is to determine whether G has elimination distance
at most k to HF . Notice that k is assumed to be fixed since it is part of the problem definition.
For a graph G, we say that X ⊆ V (G) is a k-elimination distance modulator of G to F-free graphs
(k-ed modulator to HF ) if there exist Y, f, g such that (X,Y, F, f, g) is a (k,HF )-decomposition of
G.

Lindermayr et al. [18] obtain their algorithm by repeatedly either identifying an irrelevant
vertex or by identifying substructures that they call ‘connectivity patterns’ using which they for-
mulate an appropriate CMSO formula over a bounded treedepth structure. In their algorithm,
they crucially require that the input graph is K5-minor free. Moreover, they note that in their
approach, all difficulties for elimination distance to bounded degree arise already in bounded degree
graphs and conjectured that solving this problem on bounded degree graphs is sufficient to solve
the problem on general graphs.

In our case, instead of focussing on bounded degree inputs as the hard case, we focus on
input graphs that are well-connected everywhere (i.e., (s, c)-unbreakable for appropriate values of
s and c). Towards this, we rely on Proposition 2.6, which requires the CMSO-expressibility of the
k-Elimination Distance to HF problem.

Lemma 3.1. k-Elimination Distance to HF is CMSO-expressible.

Proof. Notice that X ⊆ V (G) is a k-ed modulator to HF if and only if G −X is F-free and
the graph Torso(X) has treedepth at most k. Here, Torso(X) is defined as the graph obtained
from G[X] by making the neighborhood of every connected component of G−X a clique. In other
words, for every distinct u, v ∈ X, (u, v) is an edge in Torso(X) if and only if either (u, v) ∈ E(G)
or there is a path in G whose endpoints are u and v and whose remaining vertices are disjoint from
X. We use this characterization of k-ed modulators to HF to write our CMSO formula.

It is straightforward to assert that a graph is an induced subgraph of G in CMSO. Therefore,
one can write a sentence asserting that X is a vertex subset in G such that G−X has no induced
subgraph isomorphic to a graph in F . Now, consider the class of graphs of treedepth at most k and
notice that these are minor closed and hence characterized by a set of β(k) forbidden minors for
some function β. Recall that k is fixed in our setting and so, we may assume that these forbidden
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minors are ‘hardcoded’ into our algorithm. Moreover, it is well-known that one can assert that
a graph is a minor of a given graph, in CMSO. Hence, it only remains for us to describe how
we express in CMSO, the graph Torso(X) for some X ⊆ V (G). Here, we encode the edge-set of
Torso(X) into a new binary relation adj⋆ such that for u, v ∈ X adj⋆(u, v) if and only if adj(u, v)
or there exists a vertex set Y such that Y ∩X = {u, v} and conn(Y ) is true, where conn(Y ) is
the standard CMSO sentence that asserts that the graph G[Y ] is connected (see, e.g., [10]). This
completes the proof of the lemma.

3.1. k-Elimination Distance to HF on (αk, k)-Unbreakable Graphs. Invoke Propo-
sition 2.6 with c = k and let αk denote the value of s given by this invocation. Due to this
proposition, it is sufficient for us to give an FPT algorithm for k-Elimination Distance to HF

on (αk, k)-unbreakable graphs and that will be our goal in the rest of this section.
We begin by recalling a straightforward enumeration algorithm to enumerate all minimal HF -

modulators of bounded size.

Observation 2. There is an algorithm that runs in time dαk+knO(d) and either correctly

concludes that there is no HF -modulator of G of size at most αk + k or outputs a family Z =
{Z1, . . . , Zℓ} of at most dαk+k vertex sets comprising every minimal HF -modulator of G of size at

most αk + k.

The above algorithm simply locates an induced subgraph of the given graph which is isomorphic
to a graph in F by brute force and then branches on the vertices in this subgraph. We note that
in the special case of F where F-free graphs are precisely the set of graphs of degree at most
some r, the exponent of n in the above algorithm can be made independent of r since computing
a forbidden structure, i.e., a vertex of degree at least r + 1, is polynomial-time solvable. Applying
this insight allows us to infer Corollary 1.2 by slightly modifying the application of Observation 2
in the proof of Theorem 1.1.

In what follows (Lemma 3.2–Lemma 3.4), consider an (αk, k)-unbreakable graph G, and an
integer k such that (G, k) is a yes-instance of (αk, k)-Unbreakable Elimination Distance to

HF . For ease of presentation, we assume that G is a connected graph.

Lemma 3.2. Let D = (X,Y, F, f : V (X) → V (F ), g : C(G[Y ]) → Lf(F )) be a (k,HF )-
decomposition of G. Then, the following properties hold:

1. G[Y ] contains at most one connected component of size at least αk.

2. If G[Y ] does not contain a connected component of size at least αk, then td(G) ≤ αk + k.

3. If td(G) > αk + k, then, G[Y ] contains exactly one connected component of size at least

αk.

Proof. Consider the first statement. Suppose to the contrary that there are two connected
components C1, C2 ∈ C(G[Y ]), such that |V (C1)| ≥ αk and |V (C2)| ≥ αk. Recall that the set
N(C1) is contained in a single root-to-leaf path in F , and hence has size at most k. Formally, let
g(C1) = u and notice that by the definition of (k,HF )-decomposition (Item 3 of Definition 2.2),
N(C1) ⊆ V (PD

u ). Also, since the depth of F is at most k, |V (PD

u )| ≤ k, and hence |N(C1)| ≤ k.
Then, the separation (N [C1], V (G) \ C1) is an (αk, k)-witnessing separation, a contradiction to G
being (αk, k)-unbreakable.

For the second statement, if G[Y ] does not contain a connected component of size at least αk,
then indeed D is a (k,Hαk

)-decomposition of G, where Hαk
is the family of graphs with at most αk

vertices each. That is, the elimination distance of G to Hαk
is at most k. Thus, by Observation 1,

td(G) ≤ αk + k.
From the previous two statements, we have that if td(G) > αk + k, then G[Y ] contains exactly

one connected component of size at least αk, proving the final statement.

The above lemma allows us to assume that either the treedepth (and hence also the treewidth)
of the input graph is bounded by αk + k (in which case one can use Lemma 3.1 and Courcelle’s
theorem [8] to solve the problem), or conclude that if (G, k) is a yes-instance, then G[Y ] contains
exactly one connected component of size at least αk. In the following two lemmas, we assume that
G has treedepth at least αk + k + 1 and present crucial structural properties on which our main
algorithm is based.

Lemma 3.3. Let D = (X,Y, F, f : V (X) → V (F ), g : C(G[Y ]) → Lf(F )) be a (k,HF )-
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decomposition of G. Moreover, suppose that td(G) > αk + k and let Z ⊆ X such that G − Z

is F-free. Let C⋆ be the unique connected component of G − X of size at least αk. Then, the

following hold:

1. There is a unique connected component of G− Z that contains V (C⋆).
2. V (G) \ V (C⋆) has size at most αk + k.

3. |X| ≤ αk + k.

Proof. As C⋆ is a connected component in G − X and Z ⊆ X, there is a unique connected
component in G − Z that contains V (C⋆). This proves the first statement. Now we prove the
second statement of the lemma. Let x := g(C⋆). Then, we define S := NG(C

⋆) ⊆ V (PD

x ) and have
that |S| ≤ |V (PD

x )| ≤ k. Let V1 = N [V (C⋆)] and V2 = V (G)\V (C⋆). For the sake of contradiction,
suppose that |V (G) \ V (C⋆)| > αk + k. Then, (V1, V2) is a separation in G of order at most k and
|V1 \ V2|, |V2 \ V1| ≥ αk. This contradicts the assumption that G is a (αk, k)-unbreakable graph.
The final statement follows from the fact that X ⊆ V (G) \ V (C⋆).

Lemma 3.4. Let D = (X,Y, F, f : V (X) → V (F ), g : C(G[Y ]) → Lf(F )) be a (k,HF )-
decomposition of G and let Z ⊆ X be a HF -modulator of G. Let C⋆ be the unique connected

component of G − X of size at least αk. Let v⋆ be an arbitrary vertex in C⋆ and let C be the

component of G−Z that contains v⋆. Let J ⊆ N(C) be an arbitrary set of size min{k+1, |N(C)|}.
Let JC ⊆ V (C) be an arbitrary set of size at most |J | such that N(JC) ⊇ J . Then, one of the

following statements hold:

1. There is a leaf u ∈ Lf(F ) such that J ⊆ V (P̂D

u ). That is, the vertices in J lie on a single

root-to-leaf path in F .

2. JC ∩X 6= ∅.
3. JC 6⊆ V (C⋆).

Proof. Suppose to the contrary that none of these statements hold. That is, there are vertices
v1, v2 ∈ J such that vp is not a descendant of vq in F for distinct p, q ∈ {1, 2}, JC ∩ X = ∅
and JC ⊆ V (C⋆). Since N(JC) ⊇ J and JC ⊆ V (C⋆), it follows that J ⊆ N(C⋆). Item 3 of

Definition 2.2 guarantees that J is contained in P̂D

g(C⋆), implying that out of v1 and v2, one is the
descendant of the other in F . This gives us a contradiction.

We are now ready to present our algorithm for k-Elimination Distance to HF on (αk, k)-
unbreakable graphs.

Lemma 3.5. k-Elimination Distance to HF on (αk, k)-unbreakable graphs can be solved in

time f⋆(k, αk) · n
O(1) for some function f⋆.

Proof. Let (G, k) be the input. We first check if the treewidth of G is bounded by αk + k

using the algorithm of Bodlaender [3]. If yes, then we solve the problem using Courcelle’s theorem.
Suppose that this is not the case. Suppose that the input (G, k) is a yes-instance of k-Elimination
Distance to HF and let D = (X,Y, F, f : V (X) → V (F ), g : C(G[Y ]) → Lf(F )) be a hypothetical
(k,HF )-decomposition of G. Using Lemma 3.2, we may assume that there is a unique component
C⋆ in G[Y ] that has size at least αk. Moreover, as the treewidth of G is at least αk + k, the third
statement of Lemma 3.3 guarantees that X has size at most αk + k. Our algorithm begins by
guessing v⋆ and then uses Observation 2 to guess a set Z ⊆ X that is a minimal HF -modulator
of size at most αk + k. There are n choices for v⋆ and dαk+k choices for Z. If the algorithm
of Observation 2 concludes that a HF -modulator of size at most αk + k does not exist, then the
second statement of Lemma 3.3 is used to correctly conclude that the input is a no-instance.

It then calls upon a subroutine Alg-special that takes as input G, k and a set Ẑ of size at most
αk + k and either correctly concludes that there is a set X ⊇ Ẑ of size at most αk + k that is a
k-elimination distance modulator to HF , or correctly concludes that one does not exist. Our main
algorithm invokes Alg-special with input G, k and Ẑ := Z. In the rest of the proof, we describe and
analyze Alg-special.

Alg-special first checks whether |Ẑ| ≤ αk + k. If not, then it returns NO. Otherwise, it locates

the component C of G− Ẑ that contains v⋆ (and hence also contains V (C⋆)) and computes J and
JC as described in Lemma 3.4. It then considers the following three exhaustive possibilites and
branches over all of them:

(i) the vertices in J lie on a root-to-leaf path in F or
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(ii) JC intersects X or
(iii) at least one vertex of JC is not contained in C⋆.
In Case (i), notice that |J | must be at most k since the depth of F is at most k. Hence, by

the definition of J , it must be the case that J = N(C). We now observe that without loss of
generality, C is disjoint from X. This is because C is F-free, N(C) ⊆ X and moreover, N(C) lies
on a root-to-leaf path in F . Thus, to solve the problem in Case (i), it is sufficient to check for the

existence of a set X such that X ⊆ V (G) \ V (C), X ⊇ Ẑ, X has size at most αk + k and X is
a k-elimination distance modulator to HF . However, since X ⊆ V (G) \ V (C), it follows that X
is contained in V (G) \ V (C⋆), which has size at most αk + k (second statement of Lemma 3.3).
Therefore, the existence of X can be verified by going over all possible subsets of X ⊆ V (G)\V (C).
This completes the description of the algorithm in Case (i).

To handle Case (ii), we recursively call Alg-special on input (G, k, Ẑ ∪{v}) for each v ∈ JC and
return YES if at least one of the recursive calls return YES.

Suppose that Cases (i) and (ii) do not hold. We now handle Case (iii) as follows. We know
that for at least one vertex of JC , say, y

⋆, the connected component of G[Y ] containing y⋆ is not
the same as C⋆. Let Cy⋆ be this component. From the third statement of Lemma 3.2, we have that
exactly one component of G[Y ] has size at least αk. Hence, Cy⋆ has size at most αk. Moreover,
N(Cy⋆) must have size at most k since it is contained in V (PD

g(Cy⋆ )), which has size at most k.

Hence, we guess y⋆ ∈ JC , enumerate all (y⋆, αk, k)-connected sets B and recursively call Alg-special

on (G, k, Ẑ ∪ N(B)). Notice that since y⋆ and v⋆ lie in the same component of G − Ẑ, N(B)

contains at least one vertex from V (C) and therefore, |Ẑ ∪N(B)| > |Ẑ|, indicating that we make

progress towards the upper bound of αk + k on Ẑ.
The correctness follows from the fact that the branching is exhaustive (Lemma 3.4). Now we

bound the running time of the algorithm Alg-special. Notice that when Ẑ > αk + k, the algorithm
immediately outputs NO. Moreover, notice that the algorithm only recurses in Cases (ii) and (iii),

where the size of Ẑ strictly increases. The number of recursive calls made in either of these cases
is dominated by Case (iii), which is upper bounded by 2O(αk+k) (see Proposition 2.3). Hence, we

conclude that the number of nodes in the branching tree is bounded by 2O((αk+k)2). The running
time at each node is upper bounded by the brute-force solution in Case (i) (which is bounded
by 2O((αk+k))nO(1)), plus the time to compute JC and run the algorithm of Proposition 2.3 |JC |
times. Hence, we conclude that the running time at each node is bounded by 2O((αk+k))nO(1),
giving us a bound of 2O((αk+k)2)nO(1) on the running time of Alg-special. Observing that all other
computational steps in our algorithm have running time dominated by the invocation of Courcelle’s
theorem on a graph of treewidth at most αk+k completes the proof of the lemma. This completes
the proof of the lemma.

Lemma 3.5, Lemma 3.1 and Proposition 2.6 imply Theorem 1.1.

4. Discussions and future work. In this work, we have answered the question of Bulian and
Dawar regarding the fixed-parameter tractability of computing elimination distance to bounded
degree graphs. In fact, we give a more general result capturing elimination distance to any graph
class characterized by a finite set of graphs as forbidden induced subgraphs.

Two further natural directions for further research on this topic arise.
1. For which other “base” graph classes H is deciding elimination distance to H, fixed-

parameter tractable? Can we characterize these perhaps, in an appropriate fragment
of logic?

2. A second direction is to investigate the parameterized complexity of various graphs prob-
lems parameterized by the elimination distance to F-free graphs. This will enable one
to go beyond the work of Bulian and Dawar for Graph Isomorsphism parameterized by
elimination distance to bounded degree graphs.

The success of the distance-from-triviality programme in parameterized complexity indicates that
the study of parameterization of graph problems by elimination distance to well-studied graph
classes is a promising direction for future research and we have given widely applicable techniques
for the task of computing the elimination distance to CMSO-expressible graph classes.
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