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Abstract—The sit-to-stand test (STS) is a simple test of function 

in older people that can identify people at risk of falls. The aim of 

this study was to develop two novel methods of evaluating 

performance in the STS using a low-cost RGB camera and another 

an instrumented chair containing load cells in the seat of the chair 

to detect center of pressure movements and ground reaction 

forces. The two systems were compared to a Kinect and a force 

plate. Twenty-one younger subjects were tested when performing 

two 5STS movements at self-selected slow and normal speeds while 

16 older fallers were tested when performing one 5STS at a self-

selected pace. All methods had acceptable limits of agreement with 

an expert for total STS time for younger subjects and older fallers, 

with smaller errors observed for the chair (-0.18 ± 0.17 s) and force 

plate (-0.19 ± 0.79 s) than for the RGB camera (-0.30 ± 0.51 s) and 

the Kinect (-0.38 ± 0.50 s) for older fallers. The chair had the 

smallest limits of agreement compared to the expert for both 

younger and older participants. The new device was also able to 

estimate movement velocity, which could be used to estimate 

muscle power during the STS movement. Subsequent studies will 

test the device against opto-electronic systems, incorporate 

additional sensors, and then develop predictive equations for 

measures of physical function. 

 
Index Terms—Biomedical monitoring, functional screening, 

Kinect, RGB camera, sit-to-stand. 

I. INTRODUCTION 

ALLS are a major concern in older people, with around 

30% of people aged over 65 falling each year, with the 

prevalence increasing in older age groups [1]. Risk factors for 

falls include low strength, poor balance and mobility problems 

[2]. People who are at risk of falls need to be identified to 

implement targeted fall-reduction programs including balance 

and strength training [3]. A simple test of physical function to 

identify fallers is the Five-times Sit-to-Stand test (5STS) [4]. 

The 5STS test was shown to outperform both the Timed-Up-

and-Go (TUG) and single-leg stance tests in differentiating 

between low, moderate and high risk of falls [5]. The 

importance of the STS test has been highlighted in many works 

in the past that have used it to screen for older adults with fall 

risk [6, 7]. There are two main variations of the test in which 

the person either performs five STS as quickly as possible [8] 
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or the person performs as many STS as possible within 30 

seconds [9].  

Performance in the STS is typically measured using a 

stopwatch to record the time taken for the task or the number of 

repetitions performed. However, instrumented versions of both 

tests have been developed to improve the accuracy of 

measurement and also to extract additional information about 

the STS performance. Such tests have used a range of 

techniques including body-worn accelerometers [10, 11], 

pressure sensors [12], and visual sensors, often using multiple 

cameras [13, 14]. In addition to the possibility of automatic 

detection of STS time, in one study parameters extracted using 

a Kinect were more closely related to the strength of the 

participants than was the overall STS time [15]. Such a finding 

indicates that extracting data on the way on how the STS is 

performed, rather than simply the time to perform the 5STS, 

could be beneficial. 

Previous techniques to evaluate the STS have included the 

use of wearable and visual sensors. For instance, a triaxial 

accelerometer mounted on the waist was used to classify 

different activities like running, walking, or postures such as 

sitting and lying, as well as transitional activities such as the 

STS and falling [10]. Accelerometers have also been used to 

distinguish between normal subjects and people with 

Parkinson’s disease with respect to their STS performance as 

part of the TUG test [11]. Although sensor-based tests can be 

effective, the user is required to wear the sensors when the test 

is being performed, which can be inconvenient. The preferred 

locations of wearable sensors have been reported as the wrist, 

on glasses, or the arm [16]. In such cases, sensors are not good 

at detecting the movement of the entire body, such as that 

performed in the STS [17]. 

Other studies have used visual sensors to evaluate the STS 

movement. For instance, Allin et al. [14] used three cameras to 

extract 3-D features like the distance between the feet and head, 

to construct body centroids. Ellipsoid tracking was then used, 

along with the Weka Machine Toolkit, to classify postures 

based on the position of the head, feet and torso [18], with an 

excellent correlation observed between the Berg Balance Score 

and the rise time of the STS. However, this process necessitated 
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manual labeling of individual body parts for one image of each 

subject to enable color information to be learned for each person 

tested. Moreover, three carefully positioned cameras were 

required to measure the STS time, making such a system 

difficult to use outside of a laboratory setting. In another study, 

pose-based descriptors from volumetric image data were used 

to identify the STS movement [19]. 

Activities, including the STS, were then identified and 

classified using the nearest neighbor method. More recently, 3-

D modeling of a human body in voxel space has been used to 

estimate STS time [13]. This study used an ellipse-fitting 

algorithm that obtained features from the image to determine 

body orientation. The best segmentation accuracies for this 

method used the ellipse fit and voxel height. This framework 

was suggested as being suitable for real-time video monitoring 

of community-dwelling older people to detect fallers, with two 

cameras required to calculate human voxels. Furthermore, the 

accuracies of background subtraction are highly dependent on 

the type of background. A cluttered background leads to false 

silhouette extractions and thus a non-robust solution [20]. 

In response to the difficulties outlined above, the solutions 

developed in this paper are two-fold: 1) We propose the design 

of a novel device in which four force sensors are built into a 

chair to measure individual STS cycles, which removes the 

requirement for participants to wear body sensors throughout 

the experiment. 2) We propose a low-cost video framework to 

measure STS time using only a single inexpensive RGB 

camera. The human skeleton from the frames captured with the 

RGB camera is extracted using a deep learning network, with 

frame sequences then segmented into STS cycles using the 

change in the location of the head.  

In this paper, we analyze the performances of these two novel 

approaches to evaluate the STS and compare them to two 

previously used instrumented systems to evaluate the STS, the 

Kinect, and a force plate. Our framework provides a number of 

advantages, such as the use of a single low-cost RGB camera 

that can be easily extended to android phones [15, 21, 22] and 

a method that does not involve background subtraction to 

extract the human silhouette. Although such a method has been 

used previously with an RGB-based camera setup [13], it fails 

in a cluttered environment when silhouette extraction becomes 

difficult. In contrast, the new method uses a deep pose library 

to extract body position. The use of visual sensors allows 

monitoring of both the time taken to perform the STS and the 

way it is performed, which is not possible in sensor-based 

approaches alone. Finally, while both STS performance and 

STS time can be analyzed using an RGB camera, the 

instrumented chair provides additional information related to 

the movement of the center of pressure, which could provide 

useful information about the STS movement. 

Our goal in this study is to design a framework to evaluate 

the STS in an unstructured setting, without requiring human 

intervention. In the next section we explain the chair design and 

the pose estimation using the RGB camera. Next, we describe 

the methodology used to determine STS time and STS velocity 

using both the visual sensors (RGB and Kinect) and the force-

based sensors (chair and force plate). We then present our 

experimental results, compare the performance of the methods 

for the four systems, and conclude with discussions and future 

work. 

II. OUR FRAMEWORK 

In this section we propose two new methods to estimate STS 

time and STS velocity during the STS movement. Firstly, an 

instrumented chair is designed using four load cells that 

eliminates the need of subjects to wear body sensors while 

performing the STS test. Next, we introduce a single RGB 

camera-based system to capture the STS movement and 

propose a technique to estimate STS time. A detailed 

description of both modules follows. 

A. Instrumented Chair Design 

A wooden chair with a 47cm seat height was instrumented 

with four load cells, which were positioned in a cross with a 

distance of 31 cm between each adjacent pair of load cells. Each 

load cell was rated for 40 kg with a precision of 8 g (CZL 601, 

Standard Load Cells, Vadodara, Gujarat, India). The load cells 

were fixed to the seat of the chair and covered by an additional 

piece of wood. Each pair of load cells on one side of the chair 

was connected to a 24-bit analogue to digital converter (ADC) 

(HX711 Avia Semiconductors, Xiamen, China), with each 

ADC placed on a bracing strut on the side of the chair in which 

it was located. The two ADC receiving signals from the left and 

right load cells were connected to a microcontroller board 

(Arduino Mega 2560, Arduino LLC, Somerville, MA, USA), 

with data acquired at 80Hz using a custom-built software 

program written in Python (Fig. 1). Instantaneous center of 

pressure (CoP) of the forces applied through the chair was 

calculated as the barycenter of the four load cells signals. 

Anteroposterior (AP) and mediolateral (ML) displacement of 

the CoP were also calculated, while the sum of the forces from 

the individual load cells were taken to be an estimate of vertical 

ground reaction force (Fz). 

 

 

Fig. 1. Load cell – Arduino – computer Interface 
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It should be noted that Fz and CoP data can only be obtained 

when the person is in contact with the chair during the STS 

movement. In addition, data from the force plate is zeroed when 

participants are seated prior to the start of any testing. 

Calibration of the chair was carried out using a series of known 

masses, which were placed at different locations on the seat of 

the chair. This was used to verify the CoP and Fz data, with all 

values accurate to within the load cell manufacturer’s 

specifications of ± 32 g for the mass and ± 1mm for the CoP. 

B. Single Camera-based Posture Analysis 

Cameras are readily available in the form of android devices 

or installed surveillance cameras. These visual sensors can be a 

useful resource in health care monitoring. Typically, multiple 

cameras are used in order to extract human silhouettes from 

video recordings [13, 14]. In the method developed for this 

study, only a novel single camera solution is used to calculate 

STS time. 

Accurate pose estimation is essential to identify people in a 

video frame. This requires the location of the body to be 

identified in each RGB frame. One way of accomplishing this 

is by background subtraction and extraction of the human 

silhouette. Although this technique is relatively simple, it gives 

false boundaries when the background is cluttered, while the 

silhouettes do not define body joints distinctively. In contrast, 

the exact location of pixels that correspond to key-points of the 

body, also known as joint points, are required for an accurate 

clinical test [23]. 

Pose estimation is a challenge in computer vision research, 

with several problems arising for researchers to deal with. Any 

pose estimation method needs to deal with clothing, lighting 

conditions, background, view angles, and occlusion. With the 

advent of deep-learning techniques, many solutions to human 

pose estimation have been introduced, such as the recently-

introduced Stacked Hourglass Network method [24]. Poses 

estimated using this library are accurate at assessing human 

movement [25]. 

The Stacked Hourglass Network method defines local 

features such as the wrist, ankle, elbow and the orientation and 

arrangement of these features with respect to each other. In 

order to capture the right description of human joints, the 

images are analyzed at different scales, with a low-level 

resolution for joints and a high-level resolution for orientation. 

The Stacked Hourglass Network consists of downscaling and 

upscaling layers, which resembles an hourglass that is stacked 

multiple times. The result of this deep network model is a set of 

K heatmaps that correspond to K joint points. The network is 

pre-trained on two datasets FLIC and MPII such that it can 

easily predict different orientations of human bodies. 

A pose consisting of 15 joint locations was estimated by the 

network for each frame of the image, as shown in Fig. 2. The 

joint locations used are head, right and left shoulder, right and 

left elbow, right and left wrist, pelvis, right and left hip, right 

and left knee, and right and left ankle. A sample estimation for 

a subject performing the STS is shown in Fig. 3, with the 

skeleton on the left and heat maps of joint estimation 

probability on the right. 

Calibration of the camera was performed using the chair as a 

reference, with the back of the chair measuring 0.5m. This was 

used to ensure that the pixels within the image that covered the 

chair corresponded to 0.5m when the other measurements were 

taken. For all recordings, the camera was placed 2.3 m on a line 

perpendicular to the front of the chair. The frame of reference 

used for the 3D data from Kinect has the IR sensor as the origin, 

while the RGB camera, which is in 2D, has the origin at the top 

left corner of the image. The frame of reference for both sensors 

transformed a frame of reference fixed on the body of the 

subject, with nearest hip of the subject taken as the origin in all 

directions of movement. 

C. STS Parameter Calculation 

The total time taken for each 5STS was estimated for each of 

the four recording systems. The method used to estimate STS 

time for both the RGB and Kinect systems was adapted from 

that of Ejupi et al. [15]. This consists of an estimation of the 

head position obtained from the camera for the duration of the 

recording. Position data were low pass filtered with a 4th order 

Butterworth filter with a 2Hz cut-off frequency. The peaks 

identified were taken to be the mid-point of the standing 

positions while the troughs were taken to be the mid-point of 

the sitting positions. If the head position was within 5cm of the 

nearest peak the subject was considered to be standing, while a 

position within 5cm of the nearest valley was taken to be sitting. 

An example of head position signals during the 5STS for the 

RGB and Kinect systems is shown in Fig. 4(a-b). 

The mean duration of the 5STS was calculated for the force 

plate and the chair, as shown in Fig. 4(c-d). Force data were also 

low pass filtered with a 4th order Butterworth filter with a 2Hz 

cut-off frequency. For the force plate, the start of each sit-to-

 

Fig. 2.  The 15-segment model of a pose used to estimate the STS 

 

Fig. 3.  Example of pose estimation during the STS movement 



TNSRE-2019-00352 
 

4 

stand phase was taken to be 10% of the peak force obtained 

during the transition to a standing position, which corresponds 

to the same ratio as the 5cm value used for the two camera-

based systems when compared to the mean standing height of 

50 cm. A subject was considered to be standing when the force 

reached 90% of the peak force for the individual STS. The 

standing phase of the STS was considered to have finished 

when vertical force decreased below 90% of peak force, with 

subjects considered to have returned to a sitting position when 

vertical force reached 10% of the previous peak. For the chair, 

the opposite method was used since force decreases during the 

sit-to-stand but increases for the force plate. Accordingly, for 

the chair sit-to-stand phase, when vertical force decreased 

below 90% of peak force, subjects were considered to have 

started to stand up, while a subject was considered to be 

standing when their force decreased below 10% of peak. The 

same approach was used for the stand-to-sit, which began when 

force reached 10% of peak force, with subjects considered to be 

sitting when 90% of peak force was reached. 

In addition to total STS time, a worthwhile parameter that 

can be obtained from an instrumented STS is sit-to-stand 

velocity. STS velocity is better able to distinguish between 

fallers and non-fallers, than total STS time [15]. STS velocity 

was calculated for the two camera-based systems using the 

method proposed by Ejupi et al. [15] for the period between the 

end of the sitting phase and the standing phase of each STS 

movement. The height change between these two points was 

divided by the time taken to obtain STS velocity. For the force 

plate and the chair, velocity was derived using Newton’s second 

law of motion between the time when force was between 10% 

and 90% of maximal force during the sit-to-stand movement. 

The force-time curve was divided by mass to produce an 

acceleration-time curve, which was then numerically integrated 

using the trapezoid rule to produce the velocity-time curve from 

which peak STS velocity was obtained. The average of STS 

velocity for the five STS movements was used in all subsequent 

analyses. 

D. Comparison of STS Parameters 

The performance of the four systems was compared using 

data collected from a sample of 21 healthy younger subjects and 

a sample of 16 older fallers. The younger participants 

performed two trials, the first of which was at a self-selected 

slow speed, while subjects were asked to perform the second 

trial as fast as possible. The older fallers performed a single trial 

at a self-selected speed. The ethics committee of the Asian 

Centre for Medical Education, Research & Innovation 

approved the study (ACMERI/18/001), with all subjects giving 

informed consent. 

Comparative performances of the four methods of obtaining 

STS time and STS velocity were undertaken using correlation 

analysis and limits of agreement, using Bland-Altman plots 

[26]. Overall STS time was compared to a reference time that 

was obtained from the analysis of a frame-by-frame record of 

each STS from the RGB camera [13]. The expert manually 

identified the beginning and end of each STS, with the 

beginning taken to be when the subject began to move their 

torso forward in the first STS, while the end of the STS was 

estimated as the moment when the subject’s torso returned to 

vertical after completing the 5th STS movement. These start 

and endpoints were chosen based on the four phases of the STS 

movement described previously [27]. The use of an expert 

assessment of the video as the gold-standard for STS time was 

chosen rather than a stopwatch, as previous research has 

reported errors due to delays in starting the stopwatch after the 

command was given to start being included in the time, while 

errors also occur when stopping the timer [13]. 

All four methods were compared with that of the expert for 

total 5STS time using Bland-Altman plots. For STS velocity, 

no expert velocity was available, therefore Bland-Altman plots 

were not used. All data processing was performed using 

custom-built software developed using LabVIEW (Version 

2018, National Instruments Corporation, Austin, Texas, USA). 

Statistical analysis was performed using SPSS (version 25, IBM 

Corporation, Armonk, New York, USA). 

 

Fig. 5. Example recording from the instrumented chair during the 5STS test 
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Fig. 4.  Calculation of STS time and STS phases for RGB camera (a), Kinect 

(b), force plate (c) and chair (d). 
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III. RESULTS 

The young subjects were aged 28.3 ± 6.8 years, weighed 67.2 ± 

9.6 kg, of height 1.70 ± 0.04 m, with BMI 23.2 ± 3.0 kg/m2, 

while the fallers were aged 67.2 ± 6.7 years, weighed 64.3 ± 

12.0 kg, of height 1.58 ± 0.07 m, with BMI 25.9 ± 4.2 kg/m2. 

The time for the slow 5STS was 13.0 ± 1.9 s, as timed by the 

expert. The time for the fast 5STS was 10.3 ± 1.4 s, while the 

fallers performed the 5STS in 18.0 ± 3.4 s. A typical example 

recording from the instrumented chair is shown in Fig. 5. 

A. Total STS Time 

The performances of the four systems for young subjects for 

5STS time against the expert time of 11.7 ± 2.1 s are shown in 

Table 1. The performance for 5STS time for the older fallers 

compared to the expert time of 18.0 ± 3.4 s is shown in Table 

2. Bland Altman plots of the limits of agreement for the four 

methods for both groups of subjects combined when compared 

to the expert values are shown in Fig. 6.  

When the ranking of each system was compared for the four 

measures of performance used against the expert, the chair had 

the best performance. For the older fallers, the chair had the 

highest correlation, smallest error, the narrowest range for the 

limits of agreement, and the highest percentage of points within 

this range. When the younger subjects were considered, the 

chair was the best for both LOA measures, along with two-

second rankings for the correlation and error measures. 

B. STS Velocity 

Comparisons for STS velocity are shown in Table 3 for younger 

participants and in Table 4 for the older fallers. The two camera-

based systems obtained higher velocities than the two force-

based systems. When the younger and older faller results were 

compared, greater discrepancies for a given system were 

observed for the two camera-based systems than for the two 

force-based systems, with lower correlations and higher mean 

differences, especially for the fallers. A comparison of the STS 

velocity measures from the four devices was made with gait 

velocity for the group of older fallers. The highest correlation 

with gait velocity was obtained for chair STS velocity (r=0.76), 

followed by the force plate (r=0.49), RGB camera (r=0.12), and 

the Kinect (r=0.07). 

IV. DISCUSSION 

In this study, two new methods were proposed to evaluate the 

STS movement, which is an important functional screening tool 

in older people. One method used pose estimation from a single 

RGB camera, while the other method used an instrumented 

chair. The findings showed that both methods performed as 

well or better than previously reported methods in which a 

Kinect and a force plate were used to calculate total STS time 

and STS velocity, both of which can differentiate between 

fallers and non-fallers.  

Both new methods had an excellent agreement with an expert 

estimation of STS in terms of the number of data points that fell 

within 2SD of the mean difference. However, the camera 

method underestimated the total STS time compared to the 

expert by around one second. In contrast, the chair method had 

an average error within 0.2 sec of the expert time. This suggests 

that the newly developed chair can accurately detect STS time 

and could offer an alternative to a manual method. The reason 

for the differences is most likely due to the difficulty in using 

head height to detect the start of the STS, which begins with a 

forward movement of the trunk before the second phase of 

vertical movement occurs [27]. To improve the accuracy of the 

camera-based techniques, it might be necessary to include the 

detection of forwards movement, rather than the vertical 

movement described previously [15].  

In addition to detecting overall STS time, it would be 

TABLE I 

PERFORMANCE OF THE TESTING SYSTEMS FOR 5STS TIME FOR YOUNG 

 Kinect RGB Force plate Chair 

Time (s) 10.8 ± 1.9 10.6 ± 1.9 11.7 ± 2.2 11.8 ± 2.2 

Correlation 0.990* 0.997* 0.979* 0.995* 

95% CI 0.975 - 0.996 0.993 - 0.998 0.948 - 0.991 0.988 - 0.998 

Error (s) -0.84 ± 0.35 -1.01 ± 0.23 -0.05 ± 0.33 -0.16 ± 0.17 

LOA (s) 1.38 0.91 1.31 0.67 

LOA (%) 90.9% 95.5% 97.7% 97.7% 

Times and mean errors are means ± SD; limits of agreement are range and 

percentage of points within this range. LOA: Limits of Agreement. 

*Correlation is significantly different from zero (p<0.05). 

TABLE II 

PERFORMANCE OF THE TESTING SYSTEMS FOR 5STS TIME FOR FALLERS 

 Kinect RGB Force plate Chair 

Time (s) 17.6 ± 3.3 17.7 ± 3.6 17.8 ± 3.5 17.7 ± 3.1 

Correlation 0.979* 0.983* 0.948* 0.988* 

95% CI 0.939 - 0.992 0.951 - 0.994 0.854 - 0.982 0.965 - 0.996 

Error (s) -0.38 ± 0.50 -0.30 ± 0.51 -0.19 ± 0.79 -0.18 ± 0.17 

LOA (s) 1.97 1.98 3.08 0.67 

LOA (%) 93.8% 93.8% 100% 100% 

Times and mean errors are means ± SD; limits of agreement are range and 

percentage of points within this range. LOA: Limits of Agreement. 

*Correlation is significantly different from zero (p<0.05). 

TABLE III 

PERFORMANCE OF THE TESTING SYSTEMS FOR STS VELOCITY FOR YOUNG 

 Kinect RGB Force plate Chair 

Velocity (m/s)  0.94 ± 0.16 0.93 ± 0.17 0.89 ± 0.20 0.74 ± 0.20 

Correlation 0.811* 0.905* 

95% CI (0.678 – 0.892) (0.832 – 0.947) 

Mean diff. (s) -0.02 ± 0.16 -0.16 ± 0.09 

Times and mean differences are means ± SD. *Correlation is significantly 

different from zero (p<0.05). 

TABLE IV 

PERFORMANCE OF THE TESTING SYSTEMS FOR STS VELOCITY FOR FALLERS 

 Kinect RGB Force plate Chair 

Velocity (m/s)  0.59 ± 0.12 0.64 ± 0.37 0.65 ± 0.18 0.53 ± 0.15 

Correlation 0.574* 0.796* 

95% CI (0.109 – 0.833) (0.496 – 0.926) 

Mean diff. (s) -0.05 ± 0.35 -0.12 ± 0.11 

Times and mean differences are means ± SD. *Correlation is significantly 

different from zero (p<0.05). 
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worthwhile identifying the time spent in each STS to detect 

fatigue as the STS is performed. Previous work has associated 

fatigue with increasingly slower times for the individual STS 

measured by the use of force plates and IMU [28]. This could 

offer an additional advantage when compared to a standard 

stopwatch method typically used in clinical settings. The error 

of the chair method was less than 10% of the minimal detectable 

change for the 5STS, which has been reported to be 2.5 seconds 

[29]. Previous work has shown that instrumented versions of 

the 5STS typically obtain quicker times than those when using 

a stopwatch [15, 30].  

The different methods were also compared for the STS 

velocity parameter. In this case, it wasn’t possible to use an 

expert for comparative purposes as it isn’t possible to calculate 

velocity from a non-instrumented STS test. When the methods 

were compared for younger subjects, similar values for STS 

velocity were observed for all systems. Likewise, when the 

older fallers were considered, similar values were also observed 

across the systems. For all of the systems, lower STS velocities 

were observed for the older fallers, as would be expected. When 

the estimates of STS velocity for the devices were compared 

with gait velocity, the two force-based measures performed far 

better than those based on visual analysis. A high correlation 

was found with gait velocity for the chair, with a moderate 

correlation for the force plate. 

There appears to be two possibilities for the lower 

correlations for the camera-based systems with gait velocity. 

Firstly, the accuracy of the methods themselves used to 

determine the head height from which velocity was estimated 

could have been inaccurate, which would have resulted in the 

differences observed. This could be further investigated using 

an optoelectronic system to record human movement, such as 

the Vicon, which would also confirm the accuracy of all 

systems presented in this work and act as a gold standard. 

Secondly, using head height to determine STS velocity could 

be the issue. During the STS there is a transition phase when 

sitting, with hip flexion occurring as the subject bends forwards 

before standing up. This can be seen in Fig 4. for both camera-

based systems, with height decreasing before standing up. This 

could create variability in the camera-based systems, meaning 

that the force-based measures might be superior, although a 

larger study is needed to confirm this finding.  

The results of this study show that the chair could be used to 

evaluate the STS in clinical settings, providing a potentially 

cheaper alternative than a force plate. The total cost of the 

components in the chair was approximately $100, which 

although not the commercial cost of a final product, would be 

substantially cheaper than a standard force plate, which 

typically cost thousands of dollars. In addition, when detecting 

STS time it was also possible to estimate STS velocity, which 

has been shown to distinguish between older controls and those 

with a history of hip fracture [31]. It would also be possible to 

estimate the power produced during the STS using the method 

proposed by Lindemann et al., in which the difference between 

seated height and standing height is combined with the rate of 

force development to estimate power [32]. Power during the 

STS is a strong predictor of overall muscle power and even 

cross-sectional area of the quadriceps [33, 34], which means the 

instrumented chair might be able to estimate muscle mass. 

This study is not without limitations. Firstly, the system has 

 
 

 
Fig. 6.  Limits of agreement between expert STS time and the four systems; (a) RGB Camera; (b) Kinect; (c) Force plate; (d) Chair 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

7 12 17 22 27

D
if

fe
re

n
ce

 i
n

 S
T

S
 T

im
e

 (
se

c)

Mean STS Time (sec)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

7 12 17 22 27

D
if

fe
re

n
ce

 i
n

 S
T

S
 T

im
e

 (
se

c)

Mean STS Time (sec)

(a) (c)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

7 12 17 22 27

D
if

fe
re

n
ce

 i
n

 S
T

S
 T

im
e

 (
se

c)

Mean STS Time (sec)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

7 12 17 22 27

D
if

fe
re

n
ce

 i
n

 S
T

S
 T

im
e

 (
se

c)

Mean STS Time (sec)

(d)(b)



TNSRE-2019-00352 
 

7 

thus far only been tested on young healthy subjects and one 

cohort of older fallers so needs to be validated on a wider range 

of older participants to determine the predictive ability of the 

system in terms of other conditions associated with aging, such 

as frailty and sarcopenia. Also, the present chair design does not 

enable all of the individual phases of the STS to be detected, 

particularly when the user is no longer in contact with the chair. 

The absence of a gold standard against which to compare STS 

velocity obtained from the four systems is also a limitation. 

Although the observed relationship between STS velocity and 

gait velocity was encouraging, it would have been useful to 

have measures of leg strength for the older subjects rather than 

using gait velocity as a proxy measure. Finally, the analysis 

performed was not automated, which would make the tests 

more widely applicable in clinical settings.  

The limitations in terms of STS phase detection will be 

addressed in future work using infrared sensors to detect body 

position and joint angles, such as hip flexion. Future work could 

also examine whether fusion of both chair and RGB systems 

would be of benefit. Finally, it would be worth evaluating 

whether the system could predict muscle power and/or muscle 

mass, as has been demonstrated by previous work with the STS 

test [33, 34]. 

V. CONCLUSION 

This paper presented the development of two novel systems to 

evaluate the STS movement. The instrumented chair performed 

the best at detecting the STS when compared to an expert, with 

encouraging results also obtained when STS velocity was 

compared to physical function. Future work will use additional 

sensors to estimate muscle power during the STS. 
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