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Abstract

We, in this paper, analyze the efficacy of an output as a resource from a universal quantum

cloning machine in information processing tasks such as teleportation and dense coding. For

this, we have considered the 3⊗ 3 dimensional system (or qutrit system). The output states

are found to be NPT states for certain ranges of machine parameters. Using the output

state as an entangled resource, we have also studied the optimal fidelities of teleportation

and capacities of dense coding protocols with respect to the machine parameters and have

made a few interesting observations. Our work is mainly motivated from the fact that the

cloning output can be used as a resource in quantum information processing and adds a

valuable dimension to the applications of cloning machines.
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1 Introduction

Quantum entanglement, apart from being central to the investigations of the fundamentals of

quantum mechanics, has also been used as a resource, enabling efficient quantum information

processing protocols such as quantum teleportation [1], superdense coding [2,3], cryptography [4,

5], quantum cloning [6] etc. The above protocols were all developed using qubits as fundamental

units of quantum information.The question of usefulness of states for quantum teleportation [7,

8], dense coding [9] and quantum cryptography [10,11] have also been studied in details. Over

the last few years, a growing interest has been felt in quantum information community to study

multi-level or higher dimensional systems or continuous spectrum systems for doing quantum

information processing. For example the concept of quantum cloning has been extended from

qubits to qutrits (quantum three level systems) [12]. This is because, in the higher dimension,

quantum information processes are supposed to be more efficient in certain situations. A quan-

tum state in a large dimensional space contains more information than one in small dimensional

space [13]. The present experimental context makes it reasonable to consider the manipulation

of more-than-two-level quantum information carriers.

Keeping the recent trends in mind, we, in this article, have focussed on developing a state

in qutrit system, whose capability in information processing has been studied. Central to our

investigations, is the usefulness of mixed states of two qutrits, obtained as an output from Buzek

- Hillery universal quantum cloning machine [14], as resources for quantum teleportation and

dense coding protocols. Our analysis of teleportation and dense coding using higher dimensional

systems provides some interesting aspects about the outputs obtained from the cloning machine

when used as resources in quantum information processing. We show that the non-optimal

output state obtained from the Buzek - Hillery cloning machine can be used more efficiently

as a resource for quantum information processing in comparison to the optimal output state

obtained from the Buzek - Hillery cloning machine. Surprisingly, our results show that the opti-

mal teleportation fdelity for a distilled non-optimal output state as a resource is more than the

optimal teleportation fdelity for a distilled optimal output state as a resource for a certain range

of machine parameters. For dense coding one can successfully use only a distilled non-optimal

output state as a resource and not the distilled optimal output state. We believe that the results

obtained in this article would add another important dimension to the applicability of quantum

cloning machines to quantum information processing [15].
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In section 2 we give a brief review of Buzek-Hillery universal quantum cloning machine and

discuss the entanglement properties of the output states obtained from the cloning machine.

Sections 3 and 4 deal with the analysis of the optimal and non-optimal output state, respec-

tively, for quantum information processing. We conclude the article with results and discussions

in section 5.

2 A brief review of Buzek - Hillery universal quantum cloning

machine (BH-UQCM):

To begin with, we consider the universal quantum cloning machine (UQCM) for arbitrary higher

dimensional Hilbert space suggested by V. Buzek and M. Hillery [14]. The BH-UQCM is an

n - dimensional quantum system, where |Xi〉x, (i = 1, 2, . . . , n) is an orthonormal basis of the

cloning machine Hilbert Space. If we consider that the cloner is initially prepared in a particu-

lar state |X〉x, then the transformation for the basis vectors corresponding to the B-H cloning

machine is given by

|ψi〉a |0〉b |X〉x −→ c |ψi〉a |ψi〉b |Xi〉x + d

n∑

j 6=i

{|ψi〉a |ψj〉b + |ψj〉a |ψi〉b } |Xj〉x, (1)

with real coefficients c and d. The action of the cloning transformation on a state can be spec-

ified by a unitary transformation acting on the basis vectors of the tensor product space of

the original quantum system |ψi〉a, the copier and an additional n - dimensional system which

becomes the copy (which is initially prepared in a specific state |0〉b). From the unitarity of the

above transformation it follows that c and d satisfy the relation

c2 + 2 (n− 1) d2 = 1. (2)

Using the transformation it was shown that the particles a and b at the output of the cloner

are in the same state (having the same reduced density matrices), which was described by the

density operator
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ρ̂aout = ρ̂bout =

n∑

i=1

|αi|2[c2 + (n− 2)d2]|ψi〉〈ψi|+
n∑

i,j=1,i 6=j

αiα
∗
j [2cd+ (n− 2)d2]|ψi〉〈ψj |+ d2I. (3)

For universal cloning transformation which generates two imperfect copies from the original

state (say, |φ〉a), the quality of the cloning will not depend on the particular state (in the given

Hilbert space) which is going to be copied if and only if the output reduced density matrix is of

the form

ρ̂
j
out = s ρ̂

j
in +

1− s

n
I, (4)

where ρ̂jin = |φ〉〈φ| is the density operator describing the original state which is going to be

cloned. Here the quantity s is called the scaling factor. To find the values for the parameters

c and d the density operator in equation (3) must take the scaled form of (4). This directly

guarantees the universality of the transformation (1). Comparing equations (4) and (3) it has

been found in [14] that the parameters c and d satisfy the equation

c2 = 2 c d. (5)

Then the normalization condition in equation (2) gives the explicit values for the parameters c

and d which are given as follows:

c2 =
2

n+ 1
, d2 =

1

2(n+ 1)
, (6)

from which it follows also that the scaling factor s is given by

s = c2 + (n− 2)d2 =
n+ 2

2(n+ 1)
. (7)

Equation (6) gives the optimal values for the real parameters c and d. For qutrit system we

have n = 3 in equation (2) and hence c2 = 1

2
and d2 = 1

8
(from equation (6)).

4



3 Analysis of two qutrit output from BH - UQCM :

We now proceed to discuss the entanglement properties of a two qutrit system generated as the

output of the UQCM (1). We consider a single qutrit system as an input to the cloning machine,

namely

|ϕ〉 = 1√
3
{ |0〉+ |1〉+ |2〉 }. (8)

The basis vectors |0〉, |1〉 and |2〉 have their independent transformed forms with respect to (1)

whereas from the linearity property of the cloning transformation and then on tracing out the

machine vectors Xi, i = 1, 2, as well as by considering only the unitarity condition (2) on c and

d for n = 3 we get the composite two qutrit density operator as

ρoutab =
(1− 4 d2)

3

2∑

i=0

|i, i〉〈i, i|+ 2

3
d2

2∑

i 6= j

[ 〈i, j|+ 〈j, i| ]

+
(
√
1− 4 d2)

3
d [

2∑

i 6= j

|i, i〉 (〈i, j| + 〈j, i| ) +
2∑

i 6= j

|i, j〉 (〈i, i|+ 〈j, i|)]

+
d2

3
[

2∑

i 6= j

|i, j〉 ( 〈i, j + 1|+ 〈j + 1, i|+ 〈i+ 1, j + 1|+ 〈j + 1, i+ 1| ) (mod 2) ]. (9)

The above state is a function of machine parameter d.

Now by positive partial transposition criteria [16], with respect to the system a, we find that

there exists two eigenvalues of the state (9) as

e1 =
1 + 4d2

6
− 1

6

√
1 + 24d2 − 104d4 + 32

√
−(2d− 1)(2d+ 1)d3

e2 =
1− 5d2

6
− 1

6

√
1− 6d2 + 25d4 − 16

√
−(2d− 1)(2d+ 1)d3. (10)

It is observed that at least one of the two obtained eigenvalues are always negative when

5



d ∈ (0, 1

2
]. The eigenvalue e1 is negative when d ∈ (0, 6+

√
2

17
) and e2 is negative when ei-

ther d ∈ (0, 1

2
√
2
) or d ∈ ( 1

2
√
2
, 1
2
]. Therefore the state (9) is NPT state for d belonging to either

of these ranges. Combining the above results we can say that the non - optimal output (9) is an

NPT state for d ∈ (0, 1
2
]. The fact that the cloned two-qutrit system generated from the UQCM

is a NPT state motivates us to analyse its utility for quantum information processing tasks such

as teleportation and dense coding.

Also we know that if ρ1 represents the ideal density operator describing the in state which

will pass through a certain cloning machine and ρ2 is the density operator of the output state

from that machine, then fidelity of cloning is calculated by Bures’ distance [17] and is defined

as follows

dB(ρ
1, ρ2) =

√
2 {1− Tr

√
(ρ1)

1

2 ρ2 (ρ1)
1

2 } 1

2 . (11)

So using (11), the fidelity of cloning of the non - optimal two qutrit output ρabout of (9) , is then

calculated as

dB(ρ
a
out, ρ

a
in) =

√
2

3

√
9− 3

√
3 + 6 d2 + 12 d

√
1− 4 d2, (12)

where ρain = |ϕ〉〈ϕ| and ρaout is the reduced density operator of ρabout which is obtained by tracing

out party b. We see that fidelity of cloning of state (9) is also a function of machine parameter

d. BH - UQCM is such a quantum copier where

dB(ρ
a
out, ρ

a
in) = constant. (13)

This also implies that for different values of the machine parameter d we get different forms of

the non - optimal output (9) and hence different fidelities of cloning. From equation (12), we

see that, when d2 = 1

8
, the fidelity of cloning from is given by 0.517638 and which is similar to

the value obtained after substituting n = 3, in the following expression.
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dB(ρ
a
out, ρ

a
in) =

√
2

√√√√1−
√

n+ 3

2(n+ 1)
(14)

3.1 Quantum teleportation and dense coding using the optimal output state

of BH-UQCM:

The output two-qutrit state obtained from the cloning machine will be an optimal state (which

we denote by ρaboptout) for d
2 = 1

8
. From (9), it is easy to show that such an output state would

be an NPT state according to [16].

In n-dimensional system, a state ρ can be used as a teleportation channel, if its fully entan-

gled fraction i.e. F (ρ) is greater than 1

n [18]. The fully entangled fraction for any arbitrary state

ρ is defined as

F (ρ) =Maxφ〈φ|ρ|φ〉, (15)

where maximum is taken over all the maximally entangled basis states φ. In this respect our

two qutrit output state is supposed to be useful in teleportation if its fully entangled fraction is

more than 1

3
. To check the utility of the two qutrit optimal output state ρaboptout in teleportation

, we therefore calculate its fully entangled fraction.

We know that the Bell basis states are four orthonormal maximally entangled states of two

qubits, which are given by

|φ±〉 = 1√
2
{|0, 0〉 ± |1, 1〉}, (16)

and

|ψ±〉 = 1√
2
{|0, 1〉 ± |1, 0〉}. (17)

Analogous to these above states, for 3− dimensional systems, or qunits we have [19]
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|φxy〉 =
1√
3

2∑

j=0

ξjy|j, j + x〉, x, y = 0, 1, 2, (18)

where, ξ := e
2πi

3 and {|0〉, |1〉, |2〉} is an orthonormal basis for the space of one qutrit. The states

(18) are maximally entangled and are mutually orthogonal.

Hence considering ρaboptout and using (15) and (18) and using the formula

〈φij |ρ|φij〉 = Tr(ρ|φij〉〈φij |). (19)

we calculate all the nine inner products of optimal output. We find that, F (ρaboptout) =
1

6
< 1

3
,

implying that the state ρaboptout is not useful for quantum teleportation teleportation tasks.

We now proceed to analyze whether the optimal state is useful for dense coding or not. A

state is said to be ’dense codeable’ if it can be used in dense coding [20]. In na ⊗ nb systems,

the capacity of dense coding for any given shared state ρab has been defined as,

χ = log2 n+ SV (ρ
b)− SV (ρ

ab). (20)

The term SV (ρ) denotes the von - Neumann Entropy, where SV (ρ
b) is the von - Neumann en-

tropy of the reduced system and SV (ρ
ab) is von - Neumann entropy for the original one (i.e. the

joint state ρab). von - Neumann Entropy is considered to be the standard measure of randomness

of a statistical ensemble described by a density matrix. For any arbitrary state ρ this is denoted

by calculated as,

SV (ρ) = −tr (ρ log ρ) = −
∑

i

ki log (ki), (21)

where ki’ s are the eigenvalues of the state ρ along-with the condition that 0 ≡ 0 log 0. This

measure has a natural significance stemming from its connections with statistical physics and
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information theory.

A shared quantum state is thus said to be useful for dense coding , if the corresponding ca-

pacity χ is more than log2 (n) (in qutrit system it is log2 (3)) . From (20), it is clear that such

states are precisely those for which SV (ρ
b) − SV (ρ

ab) > 0. For the state ρaboptout, we find that

SV (ρ
b
optout)−SV (ρaboptout) = −0.43872 < 0. Hence the state ρaboptout is not useful for the dense cod-

ing protocol. As the optimal output state is neither useful for teleportation nor useful in dense

coding, we proceed further for the distillation of the optimal output state and to investigate its

efficacy for teleportation as well as for dense coding.

3.2 Construction of filter and analysis of the distilled optimal state in tele-

portation and dense coding:

In Section 3.1, we have seen that the optimal output state ρaboptout is not useful for teleportation

and dense coding protocols. For 2 ⊗ 2 dimensional systems, any state can be made useful for

teleportation [21].

Horodecki et al. [18] showed that any state violating the reduction criteria is distillable. In

reduction criteria, for a state ρ, we first calculate the state ρa = Trb(ρ), which is a reduction of

the state of interest. Then one should check the non negativity of the eigenvalues of the operator

(ρa ⊗ I − ρ) i.e. one should have

ρa ⊗ I − ρ ≥ 0. (22)

The dual criteria

I ⊗ ρb − ρ ≥ 0, (23)

can also be used. It is easy to see that the state ρaboptout violates reduction criteria. Hence it is

distillable. We can now distill ρaboptout calculating the eigenvector corresponding to the suitable

negative eigenvalue of the state, (ρaoptout⊗I−ρaboptout) and subjecting the state to the appropriate

filter. For this, we need to calculate the eigen vector |Ψ〉 corresponding to the negative eigenvalue
of the operator (ρaoptout ⊗ I − ρaboptout). If the form of such an eigen vector is |Ψ〉 =

∑N
i, j aij |i〉|j〉,

then the filter A is nothing but an operator which can simply be represented using a matrix

9



where the element of the matrix can be given as Aij =
√
N aij [18]. Also, we know that if ρ is

any state and A is a filter then a new state ρ/ is found as

ρ/ =
A† ⊗ I ρA ⊗ I

Tr(ρ AA† ⊗ I)
, (24)

where A is the filter. By following the procedures described in [18], we construct the filter for

the optimal state ρaboptout. The filter is denoted by Aopt and is given by

Aopt =




√
3(3

2
−

√
29

2
)

√
3(−7

2
+

√
29

2
) −

√
3

√
3(7

2
−

√
29

2
)

√
3(−3

2
+

√
29

2
)

√
3

√
3(5

2
−

√
29

2
)

√
3(−5

2
+

√
29

2
) 0


 . (25)

Using (24) we find the distilled form of the optimal state of ρaboptout. Let us denote this by ̺
ab
optout

and so we have

̺aboptout =
A

†
opt ⊗ I ρaboptout Aopt ⊗ I

Tr(ρaboptout Aopt A
†
opt ⊗ I)

. (26)

The filtered optimal state (26) is found to be suitable for teleportation since the fully entangled

fraction of ̺aboptout i.e. F (̺
ab
optout) = 0.38789 > 1

3
. Moreover, the optimal teleportation fidelity for

any arbitrary state ρ in n− dimensional system is defined as

f(ρ) =
nF (ρ) + 1

n+ 1
. (27)

Therefore in qutrit system, the optimal teleportation fidelity of the state ̺aboptout is given by

f(̺aboptout) =
3F (̺aboptout) + 1

4
= 0.5409. (28)

Similarly, for the dense coding protocol using (20) and (26) we see that, SV (̺
b
optout)−SV (̺aboptout) =

−0.3327 < 0. Therefore the filtered optimal state is still not useful for dense coding.
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3.3 Quantum teleportation and dense coding using the non-optimal output

state of BH-UQCM::

For the values of machine parameter d other than 1

2
√
2
(i.e. d2 = 1

8
), the state (9) is said to be non

- optimal. Also we know that for d ∈ (0, 1
2
], the state (9) is NPT. Now the non optimal output

state (9) cannot be used as a teleportation channel, for in this case we see that F (ρabnonopt) =
4d2

3

never exceeds 1

3
. Hence the non-optimal state ρabnonopt is also not useful to be used as a resource

for teleportation process.

This can be verified also in the following way. We know that a hermitian operator W may

be called a teleportation witness if the following conditions are satisfied (i) Tr(Wσ) ≥ 0, for all

states σ which are not useful for teleportation, (ii) Tr(Wχ) < 0 for at least one state χ which

is useful for teleportation [22,23], where

W =
I

3
− |φ+〉〈φ+|, (29)

where, |φ+〉 = 1

3

∑
2

i=0
|ii〉.

For the non-optimal state ρabnonopt, we see that Tr(Wρabnonopt) =
4

3
d2, which is always positive for

0 < d ≤ 1

2
. This proves that the state ρabnonopt cannot be used in telelportation.

In order to see whether the state ρabnonopt is useful in dense coding or not, we plot a graph

between SV (ρ
b
nonopt) − SV (ρ

ab
nonopt) and the machine parameter d, where ρbnonopt is the reduced

density operator of the two qutrit output state ρabnonopt and is given by,

ρbout =




1

3

1

3
d(2

√
1− 4d2 + d) 1

3
d(2

√
1− 4d2 + d)

1

3
d(2

√
1− 4d2 + d) 1

3

1

3
d(2

√
1− 4d2 + d)

1

3
d(2

√
1− 4d2 + d) 1

3
d(2

√
1− 4d2 + d) 1

3


 . (30)

It is clear from the following figure that the non optimal two qutrit output state ρabnonopt is not

useful for dense coding when d ∈ (0, 1
2
].
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Figure 1: The figure shows that the difference SV (ρb) − SV (ρab) always lies in the fourth quadrant of the

cartesian plane with respect to the values of d in the range (0, 1

2
].

3.4 Construction of filter and study of the non - optimal filtered states in

teleportation and dense coding:

As the non-optimal output state also cannot be used for information transfer, we try to find out

whether it is possible to distill the non-optimal output state using an appropriate filter so that

the distilled system can be used for quantum information protocols.

Similar to the optimal output state, the non optimal state (9) violates the reduction criteria

[18]. So as before we can distill ρabnonopt calculating the eigenvector corresponding to the suitable

negative eigenvalue of the state, (ρanonopt ⊗ I − ρabnonopt), subjecting the state to the appropriate

filter. We find the eigenvalue as

e
/
1
=

1− 3d2

6
+

1

3

√
−(2d− 1)(2d+ 1)d−

1

6

√
1− 18d2 + 4

√
−(2d− 1)(2d+ 1)d+ 113d4 − 44d3

√
−(2d− 1)(2d+ 1), (31)

which is always negative for d ∈ (6+
√
2

17
, 1
2
]. Hence following [18], we construct the filter Anonopt

to distill the state ρabnonopt where,

12



Anonopt =
√
3




1 −k −k
−k 1 −k
−k −k 1


 . (32)

where k = 11d2−2
√
1−4d2d+

√
1−18d2+4

√
1−4d2d+113d4−44d3

√
1−4d2−1

4d2
and d ∈ (6+

√
2

17
, 1

2
].

This will transform the non optimal state ρabout to its filtered form τabout defined by

τabout =
A

†
nonopt ⊗ I ρabout Anonopt ⊗ I

Tr(ρabout Anonopt A
†
nonopt ⊗ I)

. (33)

The fully entangled fraction of τabout is given as

F (τabout) =

4[d2(2(1− t1) + d2(22t1 − 31) + t2(10− 110d2 − 6t1) + 198d4)]

3[(1− k) + t2(6− 68d2 + 94d4 − 4t1 + 12t1d2) + d2(6t1 − 9− 5d2 + 23t1d2)]
, (34)

where t2 =
√
1− 4d2.d and t1 =

√
1− 18d2 + 4t2 + 113d4 − 44d2.t2

Evidently, for 6+
√
2

17
< d ≤ 1

2
, the states τabout are always suitable for teleportation since there

F (τabout) >
1

3
. Moreover, the optimal teleportation fidelity of τabout is then given by

f(τabout) =
3F (τabout) + 1

4
. (35)

Alternately, using [22,23] and (29) it has been observed that Tr(Wτabout) = − 1

4d4
[−1 + 439d6 +

17d2 − 119d4 − 534d4t2 + 65d4t1 + 108d2t2 − 6t2 + t1 + 4t1t2 − 36d2t1t2 − 14d2t1].

From there we find that Tr(Wτabout) < 0 for d ∈ (6+
√
2

17
, 1
2
], which implies that in this range

the state τabout can always be used in teleportation but for d ∈ (0, 6+
√
2

17
), the filtered state τabout

cannot be used in teleportation since Tr(Wτabout) > 0 there.
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In order to check the usefulness of the state τ bout for dense coding, we show that SV (τ
b
nonopt) −

SV (τ
ab
nonopt) > 0 for d ∈ (6+

√
2

17
, 1
2
]. Hence, the state τabout can also be used as a resource in dense

coding protocol as also evident from the figure 3. Interestingly, the optimal fidelity obtained

in case of teleportation using the distilled non-optimal output state as an entangled resource

is greater than the optimal fidelity obtained in case of teleportation using the distilled optimal

output state. Moreover, the distilled optimal output state cannot be used for dense coding, but

distilled non-optimal output state can be successfully used as a resource for dense coding. In

the following figure we plot the teleportation fidelities and capacities of dense coding of non -

optimal filtered states corresponding to d. We see that the fidelity of teleportation reaches its

maximum for d = 1

2
and the maximum value is 0.68 approx whereas the for d = 1

2
the capacity

of dense coding of τabout is 2.08 approx.

Figure 2: In the figure the dotted lines represent the capacity of dense coding i.e. χ(τab

out) of the non optimal

states and dashed line represent the teleportation fidelities i.e f(τab

out) of the said state with respect to d.

Now using (21) we calculate the mixedness of the filtered non optimal state τabout as before, and

we plot the mixedness of ρabout and τabout against the parameter d ∈ (6+
√
2

17
, 1
2
] in the following.

From the above figure it is obvious that after distillation of the state ρabout, the filtered state τabout

is less mixed than its original counterpart. Mixedness, capacity of dense coding and fidelity of

14



Figure 3: The ordinate of the figure represents the von - Neumann entropy of a state ρ, where solid line

corresponds when ρ = ρabout and dotted line corresponds when ρ = τab

out.

teleportation of the state τabout has already been calculated. In the following figure we plot these

three quantities with respect to the parameter d.

Figure 4: The dotted line represents mixedness of the filtered state, dashed line represents fidelity of teleportation

and the long dashed line represents the capacity of dense coding of the said state.

From figure it is clear that when mixedness of the state decreases both the capacities of dense

coding and fidelities of teleportation of the states for different values of d, increases.
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4 Summary and Discussion:

To summarize, We have studied the entanglement properties and the usefulness of a two qutrit

output state generated through Buzek - Hillery quantum cloning machine for quantum infor-

mation process- ing. Although we found that the optimal as well as non-optimal output states

are not useful for information processing protocols such as teleportation and dense coding, the

distilled output states using appropriate filters can be used as a entangled resource for infor-

mation processing for certain range of machine parameters. It is interesting to note that while

the distilled optimal output state can only be used for teleportation, the distilled non-optimal

output state can be used for teleportation as well as dense coding. Surprisingly, the optimal

teleportation fidelity obtained using the distilled non-optimal output state exceeds the opti-

mal teleportation fidelity obtained using the distilled optimal output state for certain values of

machine parameter d.
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