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S-DENSITY FUNCTION ON THE CLASS GROUP OF PROJECTIVE
TORIC VARIETIES

MANDIRA MONDAL

ABSTRACT. We prove the existence of a compactly supported, continuous (except at
finitely many points) function grm : [0,00) — R for all monomial prime ideals I
of R of height one where (R, m) is the homogeneous coordinate ring associated to a
projectively normal toric pair (X, D), such that

/0 " gt m(N)dA = 5(I,m),

where 8(I, m) is the second coefficient of the Hilbert-Kunz function of I with respect
to the maximal ideal m, as proved by Huneke-McDermott-Monsky [HMMO04]. Using
the above result, for standard graded normal affine monoid rings we give a complete
description of the class map 7y : CI(R) — R introduced in [HMMO4] to prove the
existence of the second coefficient of the Hilbert-Kunz function. Moreover, we show
the function grm is multiplicative on Segre products with the expression involving
the first two coefficients of the Hilbert plolynomial of the rings and the ideals.

1. INTRODUCTION

Let R be a Noetherian ring of prime characteristic p > 0 and of dimension d and let
17 C R be an ideal of finite colength. Let M be a finitely generated R-module. The
Hilbert-Kunz function of M with respect to the ideal 7 is defined as

HK(M, n)(n) := (M /" M)

where ¢ = p", the ideal 79 = n-th Frobenius power of the ideal n and ¢(M/nl4M)
denotes the length of the R-module M/nl9M. The limit

o1
Jim UM /n M) =: enx(M, )
exists [Mon83] and is called the Hilbert-Kunz multiplicity of M with respect to the
ideal . In addition to the above conditions, when R is an excellent normal domain,
Huneke, McDermott and Monsky [HMMO04, Theorem 1] have shown the existence of a
real number (M, n) such that

HK(M7 77)(") = eHK(Mv U)qd + ﬁ(Mv U)qd_l + O(qd_2>‘

Date: November 8, 2022.
2010 Mathematics Subject Classification. 13D40, 13H15, 14M25, 52B20.
Key words and phrases.  coefficients of Hilbert-Kunz function; Hilbert-Kunz density function;
[B-density function; projective toric variety; height one monomial prime ideal; convex geometry.
The author is supported by NBHM postdoctoral fellowship, India and partially by an Infosys
Foundation fellowship.
1



2 MANDIRA MONDAL

In the course of the proof of the above result, they have asserted the existence of a
homomorphism 7, : CI(R) — R on the class group of R, CI(R), the quotient of the
free abelian group on the height one prime ideals of R by the subgroup of principal
divisors. Let M be a finitely generated R-module. Then M admits a finite filtration
0—--+M;_1 — M;---— M such that M;/M;_; is isomorphic to R/P; with P, prime
ideals in R. Consider the divisor — Y P; where the sum is taken over all P; appearing
in the quotients M;/M;_; that are of height one. The image of this divisor in the class
group of R is independent of the filtration chosen for M, and is defined as the class
of M, denoted by ¢(M). Let M be a finitely generated torsion-free R-module. By
[HMMO04, Corollary 1.10], the limit

T,(M) := lim di [6(M /0D M) — rank(M)(R/n!9)]

q—o0 ( -1
is well defined and depends only on ¢(M), the class of M in CI(R). When R is F-finite,
rank (M)
B(M,n) = 1y(c(M)) — W%(C(IR)),

where 'R denotes the finitely generated module R over itself with the action given by
the first Frobenius homomorphism.

The result of Huneke-McDermott—Monsky was generalised by Hochster-Yao in [HY09]
from normal rings to the equidimensional reduced rings such that the singular locus
is given by an ideal of height at least 2. Chan and Kurano have proved the result for
reduced rings regular in codimension one [CK16]. For a normal affine monoid R, Bruns
in [Bru05] have proved that HK function is a quasi polynomial and gave another proof
of the existence of the constant second coefficient (R, m).

In order to study egx(M,n), when R is a standard graded ring (dim(R) > 2) with
a homogeneous ideal 7 of finite colength and M is a finitely generated non-negatively
graded R-module, Trivedi has defined the notion of Hilbert-Kunz density function, and
obtained its relation with the HK multiplicity [Tril8, Theorem 1.1]: The sequence of
functions { f,(M,n) : [0,00) — R}, given by

Fu(M,)() = %ﬁ(M/n[‘”M) )

converges uniformly to a compactly supported continuous function far, : [0,00) — Rxo,
such that

EHK(M, 7’]) = /(;Oo fM,n()\)d)\

We call far, the Hilbert-Kunz density function or the HK density function of M with
respect to the ideal 7. The existence of a uniformly converging sequence makes the
density function a more refined and useful invariant (compared to egg) in the graded
situation ([Tril7], [Tril9], [TW20]). Applying the theory of HK density functions
to projective toric varieties (denoted here as toric pairs (X, D)), one obtains [MT19,
Theorem 6.3] an algebraic characterization of the tiling property of the associated
polytopes Pp (in the ambient lattice) in terms of the asymptotic growth of ey, i.e.,
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ernr (R, m*) relative to eg(R, m*) (the Hilbert Samuel multiplicity of R with respect
to the ideal m*) as k — oco.

Let (X, D) be a toric pair, i.e., X is a projective toric variety over an algebraically
closed field of characteristic p > 0, with a very ample T-Cartier divisor D and let R
be the homogeneous coordinate ring of X, with respect to the embedding given by the
very ample line bundle Ox (D), with homogeneous maximal ideal m. There is a convex
lattice polytope Pp as in (2.1), a convex polyhedral cone Cp and a bounded body Pp
as in (2.3), associated to a toric pair (X, D). Such a bounded body was introduced
by K. Eto (see [Eto02]), in order to study the HK multiplicity for a toric ring, and he
proved that ey is the relative volume of such a body (we use the notation rVol, to
denote the n-dimensional relative volume function). In [MT19], it was shown that the
HK density function at A is the relative volume of the {z = A} slice of Pp.

Similar to the HK density function, for a ‘projectively normal’ toric pair (X, D) (i.e.,
(X, D) is a toric pair such that the coordinate ring R is an integrally closed domain),
it was shown in [MT20] that there exists a §-density function ggm : [0, 00) — R which
similarly refines the S-invariant of [HMMO04]. More precisely, it was shown that the
sequence of functions {g,(R,m) : [0,00) — R},.en, given by

gu(R,m)(\) = qi (6R /M) oy — Frm(LaN) f0)a™) (11)

converges uniformly to a compactly supported continuous (except possibly on a finite
set) function grm such that [;° grm(x)dz = (R, m). It was shown that the 5-density
function grm at A is expressible in terms of the relative volume of the {z = A} slice of
the boundary, 0(Pp), of Pp (stated in this paper as Theorem 2.1).

In regard to Theorem 2.1, one would like to ask whether there exists the notion of
p-density function (with respect to the homogeneous maximal ideal m) for all finitely
generated non-negatively graded R-modules M which refines the invariant §(M, m).
In this paper we answer this question affirmatively for monomial prime ideals of R
of height one. Using this result, we define a ‘r-density function’” ay, : [0,00) — R
for these ideals which describe the value of the function 7, : [0,00) — R for these
ideals via a simple integral formula, i.e., [;° oy m(x)dz = T (I). This gives a complete
description of the homomorphism 7 = 7, since the class group of R is generated by
its monomial prime ideals of height one.

Let I = pr be a monomial prime ideal of height one, associated to a facet F' of Pp.
To prove the existence of the S-density function for I with respect to the homogeneous
maximal ideal m, consider the sequence of functions {g,(/, m) : [0,00) — R}, given
by

gn([> m)()‘) = qd—1_2 (E(I/m[q}l) [Aq] — .fI,m('_)‘QJ /Q)qd_l) :
Let op : R — R be the support function for the facet of C'p corresponding to the
facet ' of Pp and let Hp, = {z € R? | op(z) = p} for all u € Qsp. Also, let
ppr = {p € Qs | u € Hp,, for some u € Pp N M}, where M is the ambient lattice
associated to the torus 7" C X (see Section 2). We prove the following main result.
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Theorem 1.1. Let (X, D) be a projectively normal toric pair of dimension > 2 and
let (R, m) be the associated homogeneous coordinate ring. Let I = pp be a monomial
prime ideal of height one, associated to a facet F' of the polytope Pp. There exists
a finite set vp, p C [0,00) such that for any compact set V. C [0,00) \ vp, r, the
sequence of functions {g,(I,m)|y} converges uniformly to a function grm|y where
Grm : [0,00) \ vp, r —> R is a compactly supported continuous function given by

9rm(N) = grm(N) = fryrmp (V) + > 1Volao(8(Pp) N Hpy, N {z = A}).

HEMD,F

Here frjrm/1:[0,00) — Rxq is the HK density function of the graded ring R/I with
respect to the homogeneous mazimal ideal m/1.
Moreover,

B(I,m) = /OOO grm(N)d.

Now we give a brief sketch of the proof of Theorem 1.1. Since frm(A) = frm(A) for
all A € [0,00) ([MT19, Proposition 2.14]), we note that

gn(I,m)(A) = go(R,m)(A) + fu(R/1,m/I)(A) + ¥n(A), (1.2)
where the function v, : [0,00) — R is given by

1 mld T
(N = - f( ) |
g mlil LA

Thus we need to show the sequence of functions {v,} converges uniformly. We note
that the proof of ‘existence’ of an invariant or a property in Hilbert-Kunz theory,
often boils down to bounding the ‘correction’ term in a converging sequence. For
example, for the proof of [HMMO04, Theorem 1], for any torsion-free R-module M with
c(M) = 0, they show that £(M/n@M) — rank(M)((R/n@) = O(¢?=?). The [HMMO04,
Lemma 1.2] is crucial for this proof which uses a similar order bound on the length
(T /nlIT) = O(q™™)) for any finitely generated R-module T', due to Monsky [Mon83)].
To prove the existence of the Hilbert-Kunz density function, in [Tril8, Proposition
2.12] Trivedi shows |f,(M,n)(A) — fu(M,n)(A)| = O(1/q) for all n’ > n > 0. In
[IMT20], for A € [0,00) and A, := [g\|/q ¢ v(Pp) (Notations 3.6(2)), it is shown that
gu(R,m)(\) = g(R,m)(\,) + c¢(\)/q with |¢(\,)| < C, a constant independent of A
and n.

In this paper, we use a similar approach to bound the error term in the converging
sequence of functions {t,}. In particular, we show that (Lemma 4.5) there exists a
finite set vp, p C [0, 00) such that for all A € [0, 00) and for all n € N with A\, & vp, F,

cx(n)

Un(A) = D 1Volys((Pp) N HpyN{z = M}) + p

KEMD,F

where |c\(n)] < C for some constant C', independent of A and n. Hence for any
compact set V' C [0,00) \ vp, , the sequence of functions {,|v} converges uniformly
to the function Wg|y, given by A — > L 1Volg_9(0(Pp) N Hp,, N {z = A}). This

MEUD,
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observation along with Equation (1.2), Theorem 2.1 and the property of HK density
function give us the proof of the first part of the main Theorem.
Now, since frm(A) = frm(A) for all X € [0, 00), by [MT20, Lemma 40] we have

[ SraDad )0 = e, m) + 0142

Now, a similar approximation of the integral of the function g;m, by the integral of
the functions g, (/, m), as was approximated the integral of the function gpm by the
integral of the functions g, (R, m) in [MT20], gives us that [}~ g;m = 8(I, m).

Acknowledgement: 1 would like to express my gratitude to Prof. V. Trivedi for her
continuous encouragement and insightful discussions.

2. DENSITY FUNCTIONS ON PROJECTIVE TORIC VARIETIES

In this paper we work over an algebraically closed field K with char p > 0. Let N
be a lattice (which is isomorphic to Z%~!) and let M = Hom(N/,Z) denote the dual
lattice with a dual pairing ( ,). Let 7' = Spec(K[M]) be the torus with character
lattice M and let X be a complete toric variety over K with fan A C N ® R := Ng.
The irreducible subvarieties of codimension 1 of X which are stable under the action of
the torus 1" correspond to the edges (one dimensional cones) of A. If 7,..., 7, denote
the edges of the fan A, then these divisors are the orbit closures D; = V(7;). Let v; be
the first lattice point along the edge 7;. A very ample T-Cartier divisor D = ). a;D;
(a; € Z) determines a convex lattice polytope in Mg := M ® R defined by

Pp={ue Mg | (u,v;) > —a; foralli} (2.1)
and the induced embedding of X in P!~! is given by
¢=¢p: X =P e (X" (@) X" (2),
where Pp N M = {uy, us, ...,u;} (for more detailed discussion, see [Ful93]).
The ring K [x™Y, ..., ] is the homogeneous coordinate ring of X with respect

to this embedding. We have an isomorphism of graded rings [CLS11, Proposition 1.1.9]

K[Y,....Y]
I
where, the kernel [ is generated by the binomials of the form

a1y a2 a b1y, b2 b
VIS Y- YPYE

~ K[y, xwY] = R, (2.2)

where ay,...,a; by, ..., b are nonnegative integers satisfying the equations
auy + -+ aqu=buy +---+ by and a+---+a=by+---+10.

Due to this isomorphism, we can consider R = K|[S] as a standard graded ring with
deg(x™Y) = 1, where S is the semigroup generated by ((Pp N M) x {z = 1}) in R%.

Let Cp be the cone generated by ((Pp N M) x {z = 1}) in R%. The prime ideals of
the polytopal ring R is in one-to-one correspondence with faces of Cp, given by

Cr <> pr = ideal of R generated by the set of monomials {x” |v € S\ Cr} C R
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where C is the face of Cp corresponding to a face F' of Pp [BG09, Proposition 2.36,
Proposition 4.32]. The height one prime ideals correspond to the facets of Pp under
this correspondence [BG09, Proposition 4.35]. In this case, the valuation v,, is the
unique extension of the support form or of Cp associated with the facet Cr. When
(X, D) is a projectively normal toric pair, i.e., the associated homogeneous coordinate
ring R is an integrally closed domain, the semigroup S = Cp N Z? and the divisorial
monomial ideals of R are exactly the R-submodules of R = K|[S] whose monomial
basis is determined by a system

{z € R | op(2) > np, F is a facet of Pp}

for np € Z [BG09, Theorem 4.53]. Let Div(.S) denote the subgroup of Div(R) generated
by monomial divisorial prime ideals and let Princ(S) be its subgroup generated by
principal monomial ideals. The class group of the semigroup S, denoted CI(S) =
Div(S)/Princ(S) is generated by the classes of the ideals pr where F' runs over the set
of facets of Pp [BG09, Corollary 4.55] and is isomorphic to the group CI(R), the class
group of R [BG09, Theorem 4.59].

For a toric pair (X, D), let

Pp={peCp|p¢ (u,l)+ Cp,for every u € Pp N M}. (2.3)

By result of Eto we have egx (R, m) = Voly(Pp) = Voly(Pp) [Eto02, Theorem 2].
Here Vol,, denotes the n-dimensional volume. Moreover,

HKd(R, m)(\) = Voly_1(Pp N {z = A}) = Volg 1(PpN{z=A})

for all A € [0,00) [MT19, Theorem 1.1]. In particular, it is a piecewise polynomial
function.
We recall the following result from [MT20]:

Theorem 2.1. [MT20, Theorem 2, Corollary 3] Let (R, m) be the homogeneous co-
ordinate ring of dimension d > 3, associated to the projectively normal toric pair
(X, D). Then there exists a finite set v(Pp) C Rsq such that, for any compact set
V C Rso \ v(Pp), the sequence {gn|v}n (as described in (1.1)) converges uniformly to
Grm|v, where gpm : Rso \ v(Pp) — R is a continuous function given by

rVol,_2 (O(Pp) N {z = A})

gR,m()\) = rVold_2 (0(73,3) N 0(C’D) N {Z = )\}) — 5 .

Moreover, we have

B(R,m) = /0 " A = Vol (2(P) 1 9(Cp)) — TV (OPD))

Throughout the paper, we use the following notations.

Notations 2.2. (1) For a facet F' of Pp, let Cr be the corresponding facet of
Cp with supporting hyperplane Hp and support form o : RY — R. Hence
Hp ={x € R | op(x) =0} and Cr = Cp N Hp. Note that
CD = m{F|F is a facet of PD}{I S Rd | O-F(x) 2 O}
(2) Cy = (u, 1)+ Cp for u € Ppb N M.
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(3) For the ideal I = pp, we set
Cr={x€Cp|or(x) >0}
(4) For a set A C Mg x R ~R? we denote
An{z=A}:=An{(x,)\) | x € R}
(5) For a bounded set A C R?, we set L(A) = AN (M x Z) = the (finite) set of
lattice points of A.

(6) For m € Z, let us denote the set of lattice points in the hyperplane {z = m}
by A, ie., Ay, =241 x {z =m} CR%L

Lemma 2.3. Let Cr C Cp be the cone generated by the facet F' of Pp. Then
(1) for ¢ € N, we have Cp \ Uuerpp)q(u, 1) + Cp = Cp \ Uuerryq(u, 1) + Ck.
(2) [Cp \ Uuer(pp)Cul N Cp = Cp \ Uuer(pp)Cu = CF \ Unerr)(u, 1) + Cp.

Proof. Proof of Part (1): Since Uyer(pp)q(w, 1)+Cp D Uyer(r)q(u, 1)+ Cp, it is enough
to show
Cr N [Uuerppyq(u, 1) + Cp] = Uyermq(u, 1) + Cp.

Let v € Cp N [Uuer(pp)q(u, 1) + Cpl. Choose vy € L(Pp) such that x = q(uo, 1) +y for
some y € Cp. Since z € Cp, we have 0 = op(x) = qop(ug, 1) + op(y). This implies
op(ug,1) = op(y) =0, ie., (ug, 1),y € Cp. Hence x € Uyermq(u, 1)+ Cp. The reverse
inclusion follows since op((u,1) +y) =0 for all u € L(F') and y € Cp.

Proof of Part (2): The first equality is obvious. The second equality follows from
Part (1). O

Remark 2.4. Let (R,m) be the homogeneous coordinate ring of dimension d > 3,
associated to the projectively normal toric pair (X, D). Let I be a monomial prime
ideal of height one, associated to a facet F' of the polytope Pp and let [z be HK

density function of the standard graded ring R := R/I with respect to its homogeneous
mazimal ideal M = m/I. For A € [0,00) and ¢ = p",n € N, we have fgym(N) =
limy, £, (R, 1) ()

) 1 R . 1
= hgn qd_2€ (m[‘ﬂ n I) N = lim ——# [(Cr \ Uuer(pp)q(u, 1) + Cp) N Agn ]

) 1
= 1171111 F [(CF \ UuEL(F)Q(uv 1) + CF) n AL‘I)‘J:| '

3. THE BOUNDARY OF Pp PARALLEL TO THE FACET Cr OF THE CONE Cp

In this section, we study the set d(Pp), the set I(Pp) N {zx € Cp | or(x) = u},
where p = op(u, 1) for some u € L(Pp \ F'). We also study the coefficient of the
Ehrhart quasi-polynomial of certain polytopes lying inside 9(Pp). We set the following
notations first:

Notations 3.1. (1) For a convex polytope @, let v(Q)) = {vertices of @J} and

F(Q) = {facets of Q}.
(2) For a convex polytope Q@ C R?, and for A € [0, 00] we set Qy = QN {z = A}
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(3) For a set ¥ C R4, 9(F) = boundary of F in R? and F° = F \ 9(F) = interior
of Fin R%.

(4) For a set F' C R 9c(F) = boundary of F in Cp in the subspace topology of
Cp, thinking of Cp C RY.

(5) For a set FF C R, we denote A(F) = affine hull of F' in R?, the smallest affine
set containing F', i.e., A(F)={>""a;f; |meN,q; eR, f; € F,>"" a; = 1}.

(6) For a set F' C RY, we say y € relint(F), the relative interior of F, if there exists
e > 0 such that By(y,e) N A(F) C F. Here By(y,€) denotes the d-dimensional
ball of radius € around y.

(7) For a facet F of Pp, and for pu € Qsg, we set Hp,, = {x € R | op(z) = p}.

(8) Let upr:={p € Qso | or(u,1) = u for some u € L(Pp \ F)}.

(9) Op,r = UueuD,Fa(PD) N Hpyp

For a toric pair (X, D), a decomposition of Cp = U3_, Fj was given in [MT19, Lemma
4.5], (for d > 3, as d = 2 corresponds to (P!, Opi(n)), for n > 1, which is easy to handle
directly), where F};’s are d-dimensional cones such that, each P; := F; NPp is a convex
rational polytope and is a closure of P} := F; N Pp. In [MT20], the boundary of Pp
was studied and described in terms of the facets of P;’s. We recall the decomposition
of Cp and few properties of O(Pp) from [MT19] and [MT20] which are relevant for this
work.

The cone F; € {d-dimensional cones}, which is the closure of a connected component
of Cp \ Uy Hyy, where the hyperplanes H;, are given by

H;,, = the affine hull of {(v, 1), (u,1),(0) | vy € v(Co;), u € L(Pp)},

where Cy; € {(d—3) dimensional faces of Pp} and 0 is the origin of R%. For u € L(Pp),
let

PJ{ = F; N Nuerrp)(Cu)® = F; N Nuerpp)[Cp \ Cul,
which is a convex set [MT19, Lemma 4.5] and P; = F; N Nyerpp)(Cp \ Cy) is the
d-dimensional convex rational polytope which is the closure of P} in Cp (which equals

the closure in RY).
Therefore
Pp =U;_, P, and Pp= Ui P,
where P, ..., P, are distinct polytopes, whose interiors are disjoint. Moreover, facets
of each P; are transversal to the z-hyperplane, i.e., dim(9(P;) N {z = A}) <d —1 for

all A € R and for all j. Note that

P; = Fj \ Uuer(Pp)Cu = Nuer(pp) Fj \ Cu = P} U (Vuer(pp)c(Cu) N Py)
and 0c(Cy) N P; = Uigiger(cy), Bgocp)yE N P; [MT20, Lemma 8]. Moreover, for any
facet E € F(P;), either E C Ej,, for some facet E;, € F(F}); or F' C F,,, for some
facet F,, € F(C,) and u € L(Pp). In the later case F' = P, N F,, = P, N A(F,,),

where F,, Z 0(Cp) [MT20, Lemma 9]. Finally we record [MT20, Lemma 10] which
gives the explicit description of J(Pp) as follows:

Lemma 3.2. (1) O(Pp) = Uiperp,) e+pnpy . In particular
(2) 9(Pp) = Upercny £ NPo YU mercaverny £ N Po-
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Lemma 3.3. Suppose v € L(Pp) \ L(F") for some F' € F(Pp).
(1) Then there exists a d-dimensional cone F; occurring in the decomposition of
Cp such that (v,1) € Fj and [(v,1) + Cp/] N F} # 0.
(2) Moreover, dim(9(F;) N[(v,1) +Cp]) = d—1, i.e., there exists E € F(P)) such
that E C (U, 1) + Cpr.
Proof. Proof of Part (1): We choose small € > 0 such that By((v,1),€) N Fj
all cones Fj in the decomposition of Cp with (v,1) ¢ Fj;. Therefore [(v,1)
Bd((v, 1), 6) Q U(v,l)eFij- If
[(U, 1) + CF/] N Bd((v, ), 6) - U(ul)epjaFj,
then d—1 = dim([(v,1) +Cp/|N By((v,1),€)) = dim([(v, 1) + Cp ] N By((v, 1), €) NOF},)
for some F}, containing (v, 1). Hence
A((v,1) + Cpr) = A([(v, 1) + Cp/] N Ba((v, 1), €)) = A(F")
for some F” € F(F},). This is a contradiction since F” passes through origin in R,
whereas 0 ¢ A((v,1) + Cp) since (v,1) ¢ Crr. Hence [(v,1) + Cr] N Fy # ) for some
F; containing (v, 1).

Proof of Part (2): We take a cone Fj such that (v, 1) € Fj and [(v, 1) +Cp/]NFy # (.
Note that dim([(v, 1) + Cr]|NF}) = d—1. By the claim in the proof of [MT20, Lemma
9(2)], we have [(v,1) + Cp/| N F; = A((v,1) + Cp) N Fj. Hence

[(v,1) + Cp] N FY Crelint((v, 1) + Cpr),

and dim(relint((v, 1) + Cp) N FY) = d — 1. Since (v, 1) € Fj, this implies for any ball
Bi((v,1),€) around (v, 1) of radius € > 0, we have

dim(relint((v, 1) + Crr) N F7 N By((v,1),€)) =d — 1. (3.1)
Since (v,1) ¢ (u,1) + Cp for all w € L(Pp) \ {v}, we can take small € > 0 such that
Ba((v,1),€) N [(u,1) + Cp] = 0 for all uw € L(Pp) \ {v}. For any

y € relint((v, 1) + Cpr) N F} N By((v, 1), €),

we may choose €, > 0 small enough such that By(y,e,) € F7 N By((v,1),€) and
Ba(y,€e,) N A((v,1) + Cpr) C relint((v, 1) + Cpr). Therefore,

Ba(y, e,) N Pj = By(y, €) \ Uuerpp)(u, 1) + Cp = Baly,€,) \ (v,1) + Cp # 0.
Hence relint((v, 1) + Cp) N F7 N By((v,1),€) € 9(P}) = O(F;). From (3.1), we have
dim([(v, 1) + Cr]NO(F;)) = d — 1. O
Lemma 3.4. (1) For p € Qso, let

App = (Uuerrp), (1, 1) + Cr) \ (U verepp), (v,1) +Cp).
or(u,l)=p or(v,1)<p

0 for
+ Cp] N

Then
Ap, CO(Pp)NHp, for all p € Q.
(2) 0(73[)) N HF,u g AF,M U BF,u U [0(73[)) N 8(CD) N HF,u] where

BF,,u - [ UUEL(PD),JF(U,1)<u (U7 1) _'_ CF’] m HF,/.L m 8(PD>
F+F'€F(Pp)
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Proof. Proof of Part (1): Let z € Ap,, ie, x € ((u,1)+Cr) \ (U ver(rp), Cy) for some
O'F(U,l)</.l
u € L(Pp\ F) with op(u,1) = p. Choose a small neighbourhood around z of radius e,
By(z,€) C R*\ (U ,erpp), Cy). Note that if By(z,e) N{y € Cp | op(y) < u} = 0 then
O’F(U,l)</.l
By(x,€) N Cp C {op > pu} which is a contradiction since op(z) = p > 0 and we have

Z € Cp with op(Z) < u. Hence,
0 # Ba(x,€) N{y € Cp | or(y) < p} C Cp\ (Vver(ry)Cv) = Pp,

which gives ¢ € Pp. Since Ap, NPp =0, this implies Ag,, C d(Pp) N H,,.
Proof of Part (2): It is enough to show that [0(Pp) \ 0(Cp)|NHp, € Ap,U Bp,,. Let

€ [0(Pp)\9(Cp)|NHp,,. Then by Lemma 3.2(2), x € E where E € F(C,,) for some
u € L(Pp). We split the proof in two cases.
Case (1): Suppose E = (u,1) + CF for some u € L(Pp). This implies op(u,1) = pu.
Suppose © ¢ Ap,,. This implies = € (v, 1)+ Cp for some v € L(Pp) with op(v,1) < p.
Since x € 9(Pp), we have x ¢ (v,1) + Cp,i.e.,x € Uperpy)(v,1) + Cp. But o ¢
(v,1) + Cp since op(v,1) < p = op(z). Hence x € [Upzperpy) (v,1)+ Cr| N Hp, N
J(Pp) C Bp,,.
Case (2): Suppose = ¢ (u,1) + Cp for all u € L(Pp). Then E = (v,1) + Cp for
some v € L(Pp) and F' € F(Pp) with ' # F'. Since z ¢ (v,1) + Cp we must have
op(v,1) < p. Hence x € Bp,. This proves Part (2). O

Definition 3.5. We recall the definition of Ehrhart quasi-polynomial of a convex poly-
tope P C Re. The function i(P,—) : N — N given by
dim(P)

i(P,n) == #(nPNZ) = ZCPn

is a quasi-polynomial of degree dim(P), i.e., the coefficient C;(P,n) of n? is periodic
inmn for all j = 0,...,n, and Cam(p) is not identically zero. Moreover Caimp) =

IVOldim(p)(P) Zf A(P) N Zd # @

Notations 3.6. (1) In the rest of the paper, for a bounded set @ C R? and for
n,m € N, we define

i(Q,n,m) == #(nQ N{z =m}NZL), (3.2)
where z is the d** coordinate function on R
(2) Let v(Pp) = Ui_ m(v(P;)), where m : R? — R is the projection given by
projecting to the last coordinate z and the set m(v(F;)) = {pjrs--- s Pju, }-
with pj, < pj, <--- < pj,. -
(3) Let 5 ={m/q \ q=p", m,n € Zxo} \ v(Pp).
Lemma 3.7. Let u € Q. There exists a finite set Sp C [0, 00) such that for A € S\ Sp
and ¢ =p",n € N, such that g\ € Z>,
(1) there exists a constant C,, > 0 (independent of X € S and n € N) such that

i([a(PD) n HFW] \ AF,M, g, q)‘) = Cu()\, n)qd_3
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for some constant c, (A, n) with |c, (A, n)| < C,,.
(2) there exists a constant Cy > 0 (independent of A € S\ Sg and n € N) such that

(0., 4, qN) = i(Ap, ¢, q\) + S (n)g*

for some constant cg\l)(n) with |CE\1)(n)| < (1. Here Ap = Upepp wAry and Op p
is as in Notations 3.1(9).

Proof. Proof of Part (1): By Lemma 3.4(2),
[0(Pp) NHpu) \ Apy € Bry, U[0(Pp) NO(Cp) N Hpy).

Note that Br, = [Userirp)open<n (U,1) + Cr] N Hp, N O(Pp)
F#F'eF(Pp)
— U EN((v,1)+ Cp) N Hp,. (3.3)

{EeF(P)) | E#PiNP;};
{F'eF(Pp) | F'#F}
{veL(Pp) | or(v,1)<p}

The second equality follows from the description of O(Pp) in Lemma 3.2(1). Note that
O(Pp) NA(Cp) N Hry = Uirierrpy) | pr2ryCr NO(Pp) N Hiy,.
Again by Lemma 3.2(1),

A(Pp)N(Cp)N Hp,, = U ENCp N Hp,. (3.4)
{E€F(P;) | E£P;NP;}
{F'eF(Pp) | F'#F}
For each convex rational polytope ) appearing in the union (in the right hand side)
of Equation (3.3) and Equation (3.4), we have dim(Q) < d — 2, since the facet Cp
is transversal to Hp, for all F' # F' € F(Pp). Write Bp, U [0(Pp) N I(Cp) N
Hp,] = U,er@, where I' is a finite index set indexing the finitely many rational
polytopes appearing in Equation (3.3) and Equation (3.4). Since dim(Q,) < d — 2, if
dim(Q,N{z = \,}) = d—2 for some \, € [0,00), then @, C {z = \,} [MT20, Lemma
14(1)]. Hence for atmost one A € [0, 00), we have dim(Q,N{z = A}) =d —2. Let Sp,
denote the (finite) set of all such A ’s, i.e., Sp, := {A € [0,00) | dim(Q, N{z = A}) =
d — 2 for some v € I'}.
Now

Z([a(PD) N HF,M] \ AR/M q, q)\) S i(U’YEFQ’w q, q)\)

= i(Qy 00N + Y €i(@ q.qN) (3.5)
~yel a€cl”
where I"” is a index set indexing the rational polytopes which are (finite) intersection
of rational polytopes from the set {Q, | v € I'} and ¢, € {—1,1} depending on a € I".
By [MT20, Lemma 49], for all A € S\ Sp, and for all Q = Q,, N---NQ,, (k> 1),
where v; € I, there exists positive constant C (independent of A and n) such that

i(Q.q.9\) = i(Qx. q) = co,(n)g"™
for some constant cq, (n) with |cg, (n)| < Cg. Hence the assertion in Part (1) follows
from Equation (3.5).
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Proof of Part (2): We set Sp := Upeup, Sk The proof follows immediately from
Part (1) since the set pp p is finite. O

Lemma 3.8. Let Q be the convex polytope E N Hp,, for p € up p and E € F(FP;) for
some j € {1,...,s}. Let A € S. Suppose, ¢ = p" for some n € N such that g\ € Z.
Then
(1) Ci-2(Qn,q) =1Volg—2(Qx)- )
(2) If dim(Q) = d — 1, then for all j = 1,...,d — 3, we have C;(Qx,q) < Cq for
some constant C’Q independent of A and n.
(3) (a) If dim(Q) = d — 2 and Q is transversal to the {z = 0} hyperplane, or
(b) if dim(Q) < d — 2,
then i(Qx, q) < qud_?’ for some constant Cg, independent of X and n.

Proof. We set m = gA\.

Proof of Part (1): We know dim(E) = d — 1 and FE is transversal to the {z = 0}
hyperplane. Hence dim(Q@,) < dim(E)) < d — 2. If dim(Q,) = d — 2, then dim(Q,) =
dim(F)) and

A(qQx) NZ% = A(qEy) NZ% = A(qE\N {z =m})NZ* # 0,
by [MT20, Lemma 14(3)]. Therefore, by the proof of Case (a), [MT20, Lemma 33(1)],
we have Cy_2(Q., q) = rVoly_2(Qy). If dim(Q)) < d—2, then by the proof of Case (b),
[IMT20, Lemma 33(1)], we have Cy_2(Qx,q) = 0 =1rVolz_2(Q,).

Proof of Part (2) follows from the proof of Part (a) of [MT20, Lemma 33(2)].
Proof of Part (3) follows from the proof of Part (b) of [MT20, Lemma 33(2)]. O

Definition 3.9. We define the set
TF = U{EEJ:(PJ.)\E¢PZ.QPJ.}J.{)\ - [0, OO) | dlm(E N HF,;U') = dlm((E N HF,H))\> =d— 2}
MEMD,F
Note that the set Tg is finite.

Remark 3.10. Recall the set Sp defined in the proof of Lemma 3.7. We remark that
Sr Cv(Pp)UTEg. To prove this we first note that Sgp = S; U Sy, where

Sy = U {A€[0,00) | dim((ENCp N Hp,)y) =d — 2}
MEMD,F
{BeF(P) | B£POPY;
(F'eF(Pp) | F'#F)
and
Sy = U {A€0,00) | dim((EN ((v,1) + Cp) N Hpp)n) = d — 2}
MEMD,F7’!)EL(PD)
{E€F(P;) | E£P;NP;};
{F'eF(Pp) | F'#F}

Hence, Sp C Sp1 U Spa U Tp where
Sp1 = U {A€[0,00) | E C Hp,,dim((E N Cp)y) = d — 2}
MEUD,F

{E€F(P;) | E#PNP;};
{F'eF(Pp) | F'#F}
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and

Se= U €000 | EC Hppdim((E N [(0,1) + Crl)y) —d — 2}
pERD,FWEL(Pp)
{EeF(P;) | E#PNP;};
{F'eF(Pp) | F'#F}

It is enough to show Sp1USEs C v(Pp). Suppose A € Sgy, ie., dim((ENCp)y) = d—2
for some F' € F(Pp) with I’ # F and E € F(F;) such that £ C Hp, for some
p € upr and E # PN P; for all i € {1,...,s}. Since dim(Cr NPp) = d — 1,
there exists £ € F(P,) for some k € {1,...,s} such that £ C Cp. This implies
ENE C{z= A}, hence A € v(Pp).

Now suppose A € Spo and dim((E N [(v,1) + Cp/])x) = d — 2 where ' € F(Pp)
with F' # F, v € L(Pp) and E € F(P;) for some j € {1,...,s} such that £ C Hp,
and E # P,NPjforallie {1,...,s}. lf ve L(F’), then A € Sp; C v(Pp). Therefore,
we assume v € L(Pp) \ L(F'). By Lemma 3.3, there exists E; € F(Fy) for some
ke {l,...,s} such that E; C (v,1) + Cp.. Hence ENE; C {z = A}, i.e,, A € v(Pp).

4. B-DENSITY FUNCTION FOR [ = pp
In the rest of the paper, we assume (X, D) is a projectively normal toric pair.
Lemma 4.1. The ideal I = pr is generated by the set {x“Y |u € L(Pp\ F)}.

Proof. For x € Z4! and any integer m > 2 with (x,m) € C; N (A,,), it is enough
to show there exists w € Pp N M such that (x,m) — (u,1) € Cr N (Ay-1). Now
(x,m) =3 cr(pp) @u(u, 1) for a, € Zsg (since Pp is a normal polytope) and

l<m= Z Ay = Z a, + Z Ay
weL(Pp) w€L(Pp\F) ueL(F)
If > crry @ = 1, then choose ug € L(F') such that a,, > 1. Since (x,m) € Cf,
we have >/ po\py@u > 0, hence (x,m) — (ug,1) € Cr N (A1), U D2 cpaw =0,
then >°, crpo\r) @ = m > 1. We choose ug € L(Pp \ F) such that a,, > 1. Then
(x,m) = (w0, 1) = 3" suer(pp\r) @ul(tt; 1)+ (au, — 1) (uo, 1) and op((x,m) — (ug, 1)) > 0,
ie., (x,m)— (ug,1) € Cr N (Ap—1). O
Definition 4.2. For the monomial prime ideal I = pr of R,
(1) we define a sequence of functions {1, : [0,00) — Rsq}nen given by

1 mldnrT
bn(\) = €< ) .
( ) qd—2 mlad ] oAl

(2) We define the ‘small density function” ¥ : [0,00) — Rx, given by
Up(A) = Y 1Volya(d(Pp) N Hry N {z = A}) = 1Voly_o(dp.r N {z = A}).

KHEMD,F

Here for Q = U;Q;, a finite union of convex rational polytopes Q; C R with
dim(Q;) < d', such that dim (Q; N Q;) < d', for Q; # Q;, we define rVoly Q) =
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> 1VolyQ; and rVolpQ = 0, if d' > d'. For a detailed discussion of the
definition of relative volume, see [MT20, Appendix A, Definition 47].

Remark 4.3. Recall the set Tr described in Definition 3.9. Note that for all A €
[O> OO) \ TF;

Up(A) = Y > 1Voly_o( EN Hp, N{z = A}).

HELD F {EE}-(PJ')‘E#PZ'I'_‘IP]‘}J'

Remark 4.4. Suppose Q = EN Hp,, for some E € F(P;), u € pup r and suppose the
function g : [0,00) — Rsq, given by
Po(N) =1rVoly_o(Q N {z = A}).

If dim(Q) = d — 1, then E C Hp, and Q = E. Therefore 1q : [0,00) \ v(Pp) —
R, given by A — 1Voly_o(Q N {z = A}) is continuous, by [MT20, Remark 36].
If dim(Q) = d — 2 and Q is transversal to the {z = 0} hyperplane or dim(Q) <
d — 3, then dim(Qy) < d — 3, hence g = 0 on [0,00). If dim(Q)) = d — 2 and
dim(Q N {z = X\o}) = d — 2 for some Ay € [0,00), then Q@ C {z = Ao}. Hence
o(Ao) = 1rVolg_2(Q N{z = A\o}) and Yg(N) =0 for all X # X\o. Hence, by Remark 4.3,
the function U : [0, 00)\ (v(Pp)UTr) — Rsq, given by X — rVoly_o(0p pN{z = A}) is
continuous. Moreover, Vg is a compactly supported and piecewise polynomial function
[IMT20, Remark 36].

Lemma 4.5. For all A € [0,00) and g = p™ € N with A\, := [gA\]/q € S\ (v(Pp)UTF),
we have

Yn(N) = Vr(A\,) + cx(n)/q, for some constant cy(n),

such that |cx(n)| < C, where C' is a constant independent of A and n € N.

Proof. For A € R>q and ¢ = p™, let m = |¢gA|. Note that
UM O D) = # [(Vuerppya(u, 1) + Cp) \ Cr) N (A)]

= # [(Uuerpp)a(u, 1) + Cp) \ (Cr N [Uer(pp)a(u, 1) + Cp]) N (A)] -
By proof of Lemma 2.3, we have
(m NI, = # [(UueL(PD)Q(u> 1)+ Cp) \ (Uuermq(u, 1)+ Cp) N (Am)}
= #[(Uuerpp\ma(u, 1) + Cp) U (Uueryq(u, 1) + [Cp \ Cr]) N (An)]. (4.1)
By Lemma 4.1,
(m1), = #[(Uuer(pp)werpp\ma(u, 1) + (v,1) + Cp) N (Ay,)]
= #[(UUGL(PD)Q(U, 1) + [CD \ CF]) M (Am>:| : (42>

The last equation follows since, (X, D) is projectively normal, i.e., Pp is a normal
polytope.
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From Equation (4.1) and Equation (4.2), we have

1
Yn(A) = W#[(UueL(PD\F)Q(Ua 1)+ Cp) \ (Uuer(pp)a(u, 1) + [Cp \ Cr]) N (An)]
1
= —=#] U (U werrpy, @(u, 1) 4+ Cp) \ (U werirp), ¢(v,1) + Cp) N (An)]
q KELD F or(u,l)=p or(v,1)<p

1 1
= —#lgAr N (An)] = —=i(Ap, q,q\n), where Ap is as in Lemma 3.4.  (4.3)
q q
If X\, ¢ Sp, by Equation (4.3) and Lemma 3.7(2), we have

Gn(A) = i(Dp 1, 4, 40a) /a2 — i (n) /g

such that \c(;n) (n)| < Cy for some constant Cy, independent of A and n. Hence

o
BN = — #a(Op.r) O (Agn)] — %

1 o
= d—2# |: U{EEf(Pj)\EipiﬁPj}j Q(E N HF,M) N (Aqkn)} -
q HEWD,F q

Y > #aENHR) N (M)

q KHEMD,F {EE]‘—(Pj”E;ﬁPZ‘ﬁPj}j

& (n)
+—5 Y eadtlaKa N (Agy,)] — 22—

a€eJ q

where J is the index set indexing the (finite) intersections of elements of the set Uj{E €
F(P;) | E # PN P;};, further intersecting with Hp,, for some p € pup g, ie., K,
E, N---NEy, NHg, for E,, € U{E € F(F) | E# P,NF;} with [ > 2andfor
some [t € pp p; €q € {1, —1}, dependlng on the K, € J. Hence 1, ()

1 ( )
= W Z (EmHFuuq q)‘ ZEaZ as 4, q)‘ )
{E€F(P))|E£P;NP;}; acJ
HEMD,F
1 i (1)
= FZ (BN Hpp)a n,Q)ﬂLq—ZEa )AnaQ)—T- (4.4)
E.u acJ
From Equation (4.4) and using Lemma 3.8, we have for all A, ¢ T,
Ua(N) = ) > 1Voly o(E N He, N {z = A\n})
HEUD F {EEF(Pj”E;ﬁPiﬂPj}j
(2) (1)
c ey (n)
+ A d 2 Zea a )\na )\nTa (45)

acJ
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for real number 05\2) (n) such that |cf\2) (n)| < Cy for some constant Cy independent of A
and n. Note that dim(K,) < d—2forall & € J. Suppose K, = E,,N---NE, NHp, for
some p € upp and E,, € U{E € F(P;) | E# PN P;} with r > 2. If dim((K,),) =
d — 2 for some A € [0,00), then dim(E,, N E,,) = dim((E,, N Ea,)r) = d — 2. Hence
E, NE,, C{z= A}, ie, A € v(Pp). Therefore, for all A € [0,00) and ¢ = p" € N
with A, € S\ (v(Pp)USpUTr) = S\ (v(Pp)UTr) (by Remark 3.10), we have v, (\) =

) @ o
> ) Voly_o(E N Hpp, N {z = A}) + 2 ()  a’() _ M ( );
KELD,F {EEF(P;)|E£P;NP;}; q q q

such that \c(f) (n)] < Cs, for some constant Cj5, independent of A and n € N [MT20,
Lemma 49]. By Remark 4.3, for all A € [0,00), ¢ =p™ € Nwith A\, € S\ (v(Pp)UTk),
we have

3) (2) (1)
GaN) = S tVolya(d(Pp) N Hiyy 0 {z = Au}) + 2 (), a’() _a.()
HEWD,F q q q
Hence the lemma. O

Lemma 4.6. For ) € [0,00),
gn(L,m)(A) = gn(R, m)(N) = fu(R/L,0/T)(A) + ¢n(A).
Proof. Let m = |g\|. We have

L m)(N) = [T/ D) = from(m /)"
= I/ )+ (0 0 D), fran(m/ o))

Using the additive property of HK density function [Tril8, Proposition 2.14], we have
frm(A) = frm(A) for all A € [0, 00). Hence we have

g, m)() = qd—l_zwf/m[q} A D) — Fram(m /@)™ + Ga(N). (4.6)
Note that

U1/ 0 Dy = # [([Cp \ CF] \ Uuerpa(u, 1) + Cp) N (Ay)]

= #[(Cp \ Uuer(rp)a(u, 1) + Cp) N (A)] — # [(Cr \ Userippya(u, 1) + Cp) N (A)]
= #(aPp N Aw) = # [(Cr \ Uuer(pp)a(u. 1) + Cp) N (An)] - (4.7)
By Equation (4.6), Equation (4.7) and Remark 2.4, it follows that

gu(I, m)(\) = qi 4¢P 1 M) — frm(m/@)®"] = Ju(R/T, m/T)(A) + (V)

= gn(R, m)(A) = fu(R/1,m/T)(A) + ¢n(X).
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Proof of Theorem 1.1. By Remark 4.4, the function VU is compactly supported and
is continuous on [0, 00) \ v(Pp) U Tr. Therefore, by [Tril8, Theorem 1] and Theorem
2.1, the function g;m = grm + fr/1,m/r + ¥ is also continuous on [0, 00) \ v(Pp) UTF.
We set vp, p = v(Pp) UTp.

Following a similar argument as in [MT20, Lemma 39(1)] and using Lemma 4.5, we
see that for any compact set V' C [0,00) \ vp, r, the sequence of functions {9, |y}

converges uniformly to the function Wp. Hence the sequence of functions {gg’m)|v}
converges uniformly to the function g; |y follows from Lemma 4.6, [Tril8, Theorem
1.1] and Theorem 2.1. Following a similar argument given in the proof of [MT20,
Corollary 3], we get [1° gr.m(A)dA = (I, m).

Corollary 4.7. With the notations as in Theorem 1.1, for a projectively normal toric
pair (X, D), we have

Yo Gem) = (7 = 2)grm(N)
{F|F is facet of Pp}
for all X € [0,00) \ vp,, r, where r € N is the number of facets of the polytope Pp.

Proof. From Theorem 1.1, for A € [O 00) \ vp,.F, we have
Z Ipr, m ( ng Z fR/IDF m/PF ) Z \I]F()‘)
FeF(Pp) FeF(Pp) FeF(Pp)

where r is the number of facets of Pp. Hence

Y GoemN) = (1)grm(A) = 1Voli—2(A(Pp) N (Cp) N {z = A})

FE]: PD)
+1Voly»([0(Pp) \ d(Cp)|N{z = A}) = (r — 2)grm(A).
The last equation follows from the description of ggm in Theorem 2.1. O

Definition 4.8. For the ideal I = pp, define another function aym : [0,00) — R by
setting

arm(A) = grm(A) — grm(A), for A € ]0,00).
Clearly [ apm(X) = Tm(I). Extend this to define a map
am : CI(R) — L([0,00)) (the space of integrable functions f : [0,00) — R)

such that it is a group homomorphism. Thus our result gives explicit description of
the map T : CI(R) — R defined in [HMMO4, Theorem 1.9]. In the next section we
compute these functions for some toric pairs.

5. SOME EXAMPLES AND PROPERTIES

Example 5.1. In this ezample, we compute the B-density functions for the toric pair
(X, D) = (P, Op1(1)) for alll € N. The polytope Pp can be taken to be the line segment
[0,1] (up to translation by integral points). The cone

Cp = Cone((0,1),(1,1)) = {(z,y) | 0 <z < Iy} C R%
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Let (R,m) be the associated homogeneous coordinate ring and let I; and Iy be the
monomial prime ideals associated to the facets Cp, = CpN{x =0} and Cp, = Cpn{x =
ly} of Cp, respectively. One has

1 ifo<A<l,
grmN) = {1 f1<A<141,
0  ifaA>1+1
and
9n.m(A) = gm(A) =0 for all X > 0.
Example 5.2. In this ezample we compute the B-density functions for the toric pair
(X, D) = (P?,0p2(1)). The polytope Pp is the convex hull of the points (0,0),(0,1)
and (1,0) in R? (up to translation by integral points). The cone
Cp = Cone((0,0,1), (0,1,1), (1,0,1)) = {(z,y,2) | 2,y 2 0,z +y < 2} CR*.
Let (R, m) be the associated homogeneous coordinate ring and let Jy, Jy and Js be the
monomial prime ideals associated to the facets Cr, = CpN{x =0}, Cp, = CpN{y =0}
of Cp and Cr, = Cp N{x +y = z}, respectively. One has
A/2 if 0 <A<,
-A+3/2 if1<A<2,
A2—-3/2 if2<A<3,
0 if A>3,

gJi,m()‘) =

and
gr.m(A) = 397, m(A) for all X > 0.
Remark 5.3. By Theorem 2.1, for \ € [0,00),

(O(Pp) n9(Cp) N{z=A}) 1Volas ([0(Pp) \ d(Cp)|N{z = A})
2 2

1 — 1
= 5 Z fR/pFivm/pFi (>‘) - 5 Z \IjFl()\),
i=1 i=1

where {F;}I_, are the facets of the polytope Pp.

gR,m()\) = I"VOId_g

In the next example we compute the functions fryp. m/pr and Wg, which enables
us to describe the [-density functions and 7-density functions of the ring and of the
monomial prime ideals of height one.

Example 5.4. We compute the B-density function and the T-density function of the
monomial prime ideals of height one for the Hirzebruch surface X = F,, which is a
ruled surface over Pk, where K is a field of characteristic p > 0. See [Ful93] for a
detailed description of the surface as a toric variety. The T-Cartier divisors are given
by

D; =V(v), i=1,2,3,4, where vy =e,vy = €9,03 = —€1 + €y, Vg = —€3
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and V (v;) denotes the T-orbit closure corresponding to the cone generated by v;. We
know the Picard group is generated by {D; | i = 1,2,3,4} over Z. One can check
Pic(X) =ZD, ® ZD, and D = ¢Dy + dDy is ample if and only if ¢,d > 0. Then

Pp={(z,y) e Mg | x> —c,0<y <d,x<ay}

The description of the HK-density function and the B-density function of the aasociated
homogeneous coordinate ring (R, m) can be found in [Tril6], [MT19] and [MT20]. The
facets of the polytope Pp are given by the hyperplanes x = 0, y = 0, x = ay + ¢ and
y =d. We denote them by F, Fy, F5 and Fy respectively. By Remark 5.3, to compute
the B-density function and the T-density function, it is enough to compute the functions
TR/pr, m/pr, and the functions Wp, for i =1,2,3,4. We draw the cross section of the
set J(Pp) at z = X level for X € [0,00) and use the interpretation of these functions in
Remark 2.4 and Definition 4.2, respectively for the computation. We have

dX fO< A<,
frppryamprn (X)) = Qdd+1—d)\) if1<A<1+3
0 A>T+,
cA ifo< <1,
frippym/pr,(A) = Qelc+1—ch) ifl<A<1+1
0 fA>T1+1,
ad\ ifO< A<,
fRpryamfpe,(A) = Qad(d+1—d\) fl1<A<1+13
0 fA>1+1
and
(ad + )X ifo< A<,
fripeym/pr,(A) = 1§ (ad+c)(1 — (ad + ¢)(A — 1)) @ﬂf<x<1+ L
0 Zf)\ > 1 + ad—l—c

To compute the functions Vg, fori=1,2,3,4, we consider two different cases.
(1) ¢ > d: We have

; if 0 <\ <1,
U = Jlet e+ DA -1) Fl<r<l+-L,
i) (C‘f‘%d)(d—l-l)%(C—i-l—C)\) zf1+ad+c<>\<1+%,
! fA>1+1
) ifoO< A<,
ad? a ;
Up(A) = (Cd+dt%+7d)c(>\—1) zflg)\<1+%’
At o+ ifl+l<i<itl

0 fA>1++
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0 ifO< A<,
U () = (c+ %) (d+1)ad(X — 1) Fl<A<1+ -,
BYET O e+ Dy d+ D (e 1—eN) U1+wﬂ<A<1+g
and
0 if0< A<,
Up () = (cd+d+“d — Y (ad + c)(A — 1) zf1<)\<1+ad+c,
BT Y d(ad + o)A = 1) + ¢ o2 ad ifl+ - <Aa<1+d,
0 ifA>1+1
(2) ¢ <d: We have
(0 fO<\<1,
(c+%)(d+1)d()\—1) if1<A<1+ d+c,
(c—l—%)(d+1)i(c+1—c)\) zfl+m_)\<1—|—§,
\I]Fl()\) = ad? 1 : 1 atl
(cd+% —ila+1—(ad+c)(A—1)) if1+3<A<14 2L
Sle+1—cA) U1+““‘<A<1+—
\0 Zf)\z].‘l—z,
0 if 0 <A <1,
Up(A) = Q(ed+d+Lyaye(A—1) ifl<i<1+]
0 fA>1+1
(0 if0< \<1,
(c+ %) (d+ 1)ad(A — 1) Fl<A<1l+
(c+ %) (d+1)(c+1—c)) fle =< A<143,
Up(A) = S (c+9)(d-1)(a+1- (ad+c)(A—1))
+ele+1—c)) fl+i<x<il+4+ 4L
clc+1—c)) fle 2l <A<144,
L0 faA>1+1
and
(0 foO< A<,
(cd+d+———)(ad+c)(>\—1) fl<A<1l+ o,
Up,(A) = Qdad+c)(A—1) +c+ off ol fld = <A<1+43,
(c+9)(d—1)(a+1—(ad+c)A—1)) ifl+3 §A<1+;i,
L0 #A21+5i.
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Definition 5.5. Let R be a Noetherian standard graded ring of dimension d > 2 with
homogeneous maximal ideal m and let M be a finitely generated non negatively graded

R-module. Let ¢(M,) = e‘zg‘_/[ﬁl) nd=t + & (M, m)n® 2+ -+ é4_1(M, m) be the Hilbert

polynomial of (M, m). Recall the Hilbert density function Fy : [0,00) — [0,00), of
M as

eo(Mm) ;. 1
WM 1_ ,}L{EOF"(A) = FKMM)’

Similarly we define the second Hilbert density function Gy : [0,00) — R as

Fy(\) =

- _ . 1 A
Gu) = s (01, m)N=* = i G =~ (W) — Fs(12) )
Proposition 5.6. Let (R, m) and (S,n) be two Noetherian standard graded rings over
an algebraically closed field K (of characteristic p > 0) of dimension d > 2 and d' > 2,

associated to the toric pairs (X, D) and (Y, D'), resply. For the monomial prime ideal
pr#S of R#S, we have,

GPF#S — Uprp#Sm#n = (GpF - gvam)(FS - fS7n) + (GS - 9S7n) (Fpp - fpnm)-

Proof. The proof follows by a similar argument used to prove [MT20, Proposition
44). O

Remark 5.7. With notations as above, using Proposition 5.6, [MT20, Proposition 44]
and [MT20, Remark 43], one gets

Qpp#S = Oppm(Fs — fsn) + (Gr — Gpp) form-

This gives a complete description of the B-density function and the T-density function
for Segre product of toric pairs.

Example 5.8. Let M be a 2 x 3 matriz whose entries are the independent variables
x1,- -, 26 and let T' be the quotient of the ring k[, - - ,x¢] by the ideal I;(M), gen-
erated by 2 x 2 minors of M. In their paper, Huneke, McDermott and Monsky have
referred to this example by K. Watanabe where B(T, mr) = —1/4 to show that the map
7 : CIT) — R is not necessarily a zero map. In this example we compute the map
T 1= Tmg for all height one monomial prime ideals. Let (R,mpg) and (S,mg) be the
homogeneous coordinate ring for the toric pairs (P!, Opi (1)) and (P?, Op2(1)) respec-
tively. Let 11,1, C R and Jy, Jo, J3 C S be the monomial prime ideals of height one of
R and S respectively. For the monomial prime ideals of height one L;#S and R#J;
of R#S, we compute the B-density function with respect to the homogeneous maximal
tdeal mp = mr#mg. We have

; o 202 — 120 = 1) if1<A<2,
R#S,mr 2\ — 15\ 4 2 if2< X< 3,

0 if A>3,
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352 ifO< <1,
SAN2—9(A—1)2 if1<A<2
e (0 ; L
Prasmr(A) LI Y if2<\<3,
and
N—6A—1)2 ifl<i<2,
BR#J]me()‘) = ( ) I

AM—2ZA=1) f2<A<3,
0 if A > 3.

Hence T7([;#S, myp) = —% fori=1,2 and T(R#J;, my) = % for j=1,2,3.
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