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β-DENSITY FUNCTION ON THE CLASS GROUP OF PROJECTIVE

TORIC VARIETIES

MANDIRA MONDAL

Abstract. We prove the existence of a compactly supported, continuous (except at
finitely many points) function gI,m : [0,∞) −→ R for all monomial prime ideals I

of R of height one where (R,m) is the homogeneous coordinate ring associated to a
projectively normal toric pair (X,D), such that

∫

∞

0

gI,m(λ)dλ = β(I,m),

where β(I,m) is the second coefficient of the Hilbert-Kunz function of I with respect
to the maximal ideal m, as proved by Huneke-McDermott-Monsky [HMM04]. Using
the above result, for standard graded normal affine monoid rings we give a complete
description of the class map τm : Cl(R) −→ R introduced in [HMM04] to prove the
existence of the second coefficient of the Hilbert-Kunz function. Moreover, we show
the function gI,m is multiplicative on Segre products with the expression involving
the first two coefficients of the Hilbert plolynomial of the rings and the ideals.

1. Introduction

Let R be a Noetherian ring of prime characteristic p > 0 and of dimension d and let
η ⊆ R be an ideal of finite colength. Let M be a finitely generated R-module. The
Hilbert-Kunz function of M with respect to the ideal η is defined as

HK(M, η)(n) := ℓ(M/η[q]M)

where q = pn, the ideal η[q] = n-th Frobenius power of the ideal η and ℓ(M/η[q]M)
denotes the length of the R-module M/η[q]M . The limit

lim
n→∞

1

qd
ℓ(M/η[q]M) =: eHK(M, η)

exists [Mon83] and is called the Hilbert-Kunz multiplicity of M with respect to the
ideal η. In addition to the above conditions, when R is an excellent normal domain,
Huneke, McDermott and Monsky [HMM04, Theorem 1] have shown the existence of a
real number β(M, η) such that

HK(M, η)(n) = eHK(M, η)qd + β(M, η)qd−1 +O(qd−2).
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2 MANDIRA MONDAL

In the course of the proof of the above result, they have asserted the existence of a
homomorphism τη : Cl(R) −→ R on the class group of R, Cl(R), the quotient of the
free abelian group on the height one prime ideals of R by the subgroup of principal
divisors. Let M be a finitely generated R-module. Then M admits a finite filtration
0 → · · ·Mi−1 → Mi · · · → M such that Mi/Mi−1 is isomorphic to R/Pi with Pi prime
ideals in R. Consider the divisor −

∑

Pi where the sum is taken over all Pi appearing
in the quotients Mi/Mi−1 that are of height one. The image of this divisor in the class
group of R is independent of the filtration chosen for M , and is defined as the class
of M , denoted by c(M). Let M be a finitely generated torsion-free R-module. By
[HMM04, Corollary 1.10], the limit

τη(M) := lim
q→∞

1

qd−1

[

ℓ(M/η[q]M)− rank(M)ℓ(R/η[q])
]

is well defined and depends only on c(M), the class ofM in Cl(R). When R is F -finite,

β(M, η) = τη(c(M))−
rank(M)

pd − pd−1
τη(c(

1R)),

where 1R denotes the finitely generated module R over itself with the action given by
the first Frobenius homomorphism.

The result of Huneke–McDermott–Monsky was generalised by Hochster-Yao in [HY09]
from normal rings to the equidimensional reduced rings such that the singular locus
is given by an ideal of height at least 2. Chan and Kurano have proved the result for
reduced rings regular in codimension one [CK16]. For a normal affine monoid R, Bruns
in [Bru05] have proved that HK function is a quasi polynomial and gave another proof
of the existence of the constant second coefficient β(R,m).

In order to study eHK(M, η), when R is a standard graded ring (dim(R) ≥ 2) with
a homogeneous ideal η of finite colength and M is a finitely generated non-negatively
graded R-module, Trivedi has defined the notion of Hilbert-Kunz density function, and
obtained its relation with the HK multiplicity [Tri18, Theorem 1.1]: The sequence of
functions {fn(M, η) : [0,∞) −→ R≥0}n given by

fn(M, η)(λ) =
1

qd−1
ℓ(M/η[q]M)⌊qλ⌋

converges uniformly to a compactly supported continuous function fM,η : [0,∞) → R≥0,
such that

eHK(M, η) =

∫ ∞

0

fM,η(λ)dλ.

We call fM,η the Hilbert-Kunz density function or the HK density function of M with
respect to the ideal η. The existence of a uniformly converging sequence makes the
density function a more refined and useful invariant (compared to eHK) in the graded
situation ([Tri17], [Tri19], [TW20]). Applying the theory of HK density functions
to projective toric varieties (denoted here as toric pairs (X,D)), one obtains [MT19,
Theorem 6.3] an algebraic characterization of the tiling property of the associated
polytopes PD (in the ambient lattice) in terms of the asymptotic growth of eHK , i.e.,
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eHK(R,m
k) relative to e0(R,m

k) (the Hilbert Samuel multiplicity of R with respect
to the ideal mk) as k → ∞.

Let (X,D) be a toric pair, i.e., X is a projective toric variety over an algebraically
closed field of characteristic p > 0, with a very ample T -Cartier divisor D and let R
be the homogeneous coordinate ring of X , with respect to the embedding given by the
very ample line bundle OX(D), with homogeneous maximal ideal m. There is a convex
lattice polytope PD as in (2.1), a convex polyhedral cone CD and a bounded body PD

as in (2.3), associated to a toric pair (X,D). Such a bounded body was introduced
by K. Eto (see [Eto02]), in order to study the HK multiplicity for a toric ring, and he
proved that eHK is the relative volume of such a body (we use the notation rVoln to
denote the n-dimensional relative volume function). In [MT19], it was shown that the
HK density function at λ is the relative volume of the {z = λ} slice of PD.

Similar to the HK density function, for a ‘projectively normal’ toric pair (X,D) (i.e.,
(X,D) is a toric pair such that the coordinate ring R is an integrally closed domain),
it was shown in [MT20] that there exists a β-density function gR,m : [0,∞) → R which
similarly refines the β-invariant of [HMM04]. More precisely, it was shown that the
sequence of functions {gn(R,m) : [0,∞) −→ R}n∈N, given by

gn(R,m)(λ) =
1

qd−2

(

ℓ(R/m[q])⌊qλ⌋ − fR,m(⌊qλ⌋/q)qd−1
)

, (1.1)

converges uniformly to a compactly supported continuous (except possibly on a finite
set) function gR,m such that

∫∞

0
gR,m(x)dx = β(R,m). It was shown that the β-density

function gR,m at λ is expressible in terms of the relative volume of the {z = λ} slice of
the boundary, ∂(PD), of PD (stated in this paper as Theorem 2.1).

In regard to Theorem 2.1, one would like to ask whether there exists the notion of
β-density function (with respect to the homogeneous maximal ideal m) for all finitely
generated non-negatively graded R-modules M which refines the invariant β(M,m).
In this paper we answer this question affirmatively for monomial prime ideals of R
of height one. Using this result, we define a ‘τ -density function’ αI,m : [0,∞) −→ R

for these ideals which describe the value of the function τ
m

: [0,∞) −→ R for these
ideals via a simple integral formula, i.e.,

∫∞

0
αI,m(x)dx = τ

m
(I). This gives a complete

description of the homomorphism τ = τ
m

since the class group of R is generated by
its monomial prime ideals of height one.

Let I = pF be a monomial prime ideal of height one, associated to a facet F of PD.
To prove the existence of the β-density function for I with respect to the homogeneous
maximal ideal m, consider the sequence of functions {gn(I,m) : [0,∞) −→ R}n, given
by

gn(I,m)(λ) =
1

qd−2

(

ℓ(I/m[q]I)⌊λq⌋ − fI,m(⌊λq⌋/q)qd−1
)

.

Let σF : Rd −→ R be the support function for the facet of CD corresponding to the
facet F of PD and let HF,µ = {x ∈ Rd | σF (x) = µ} for all µ ∈ Q≥0. Also, let
µD,F = {µ ∈ Q>0 | u ∈ HF,µ for some u ∈ PD ∩M}, where M is the ambient lattice
associated to the torus T ⊂ X (see Section 2). We prove the following main result.
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Theorem 1.1. Let (X,D) be a projectively normal toric pair of dimension ≥ 2 and
let (R,m) be the associated homogeneous coordinate ring. Let I = pF be a monomial
prime ideal of height one, associated to a facet F of the polytope PD. There exists
a finite set vPD ,F ⊂ [0,∞) such that for any compact set V ⊂ [0,∞) \ vPD ,F , the
sequence of functions {gn(I,m)|V } converges uniformly to a function gI,m|V where
gI,m : [0,∞) \ vPD ,F −→ R is a compactly supported continuous function given by

gI,m(λ) = gR,m(λ)− fR/I,m/I(λ) +
∑

µ∈µD,F

rVold−2(∂(PD) ∩HF,µ ∩ {z = λ}).

Here fR/I,m/I : [0,∞) −→ R≥0 is the HK density function of the graded ring R/I with
respect to the homogeneous maximal ideal m/I.

Moreover,

β(I,m) =

∫ ∞

0

gI,m(λ)dλ.

Now we give a brief sketch of the proof of Theorem 1.1. Since fR,m(λ) = fI,m(λ) for
all λ ∈ [0,∞) ([MT19, Proposition 2.14]), we note that

gn(I,m)(λ) = gn(R,m)(λ) + fn(R/I,m/I)(λ) + ψn(λ), (1.2)

where the function ψn : [0,∞) −→ R is given by

ψn(λ) =
1

qd−2
ℓ

(

m[q] ∩ I

m[q]I

)

⌊qλ⌋

.

Thus we need to show the sequence of functions {ψn} converges uniformly. We note
that the proof of ‘existence’ of an invariant or a property in Hilbert-Kunz theory,
often boils down to bounding the ‘correction’ term in a converging sequence. For
example, for the proof of [HMM04, Theorem 1], for any torsion-free R-module M with
c(M) = 0, they show that ℓ(M/η[q]M) − rank(M)ℓ(R/η[q]) = O(qd−2). The [HMM04,
Lemma 1.2] is crucial for this proof which uses a similar order bound on the length
ℓ(T/η[q]T ) = O(qdim(T )) for any finitely generated R-module T , due to Monsky [Mon83].
To prove the existence of the Hilbert-Kunz density function, in [Tri18, Proposition
2.12] Trivedi shows |fn(M, η)(λ) − fn′(M, η)(λ)| = O(1/q) for all n′ > n ≫ 0. In
[MT20], for λ ∈ [0,∞) and λn := ⌊qλ⌋/q /∈ v(PD) (Notations 3.6(2)), it is shown that
gn(R,m)(λ) = g(R,m)(λn) + c(λn)/q with |c(λn)| < C̃, a constant independent of λ
and n.

In this paper, we use a similar approach to bound the error term in the converging
sequence of functions {ψn}. In particular, we show that (Lemma 4.5) there exists a
finite set vPD ,F ⊂ [0,∞) such that for all λ ∈ [0,∞) and for all n ∈ N with λn /∈ vPD ,F ,

ψn(λ) =
∑

µ∈µD,F

rVold−2(∂(PD) ∩HF,µ ∩ {z = λn}) +
cλ(n)

q

where |cλ(n)| ≤ C for some constant C, independent of λ and n. Hence for any
compact set V ⊂ [0,∞) \ vPD ,F , the sequence of functions {ψn|V } converges uniformly
to the function ΨF |V , given by λ 7→

∑

µ∈µD,F
rVold−2(∂(PD) ∩ HF,µ ∩ {z = λ}). This
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observation along with Equation (1.2), Theorem 2.1 and the property of HK density
function give us the proof of the first part of the main Theorem.

Now, since fR,m(λ) = fI,m(λ) for all λ ∈ [0,∞), by [MT20, Lemma 40] we have
∫ ∞

0

fI,m(⌊λq⌋/q)dλ = eHK(I,m) +O(1/qd−2).

Now, a similar approximation of the integral of the function gI,m by the integral of
the functions gn(I,m), as was approximated the integral of the function gR,m by the
integral of the functions gn(R,m) in [MT20], gives us that

∫∞

0
gI,m = β(I,m).

Acknowledgement: I would like to express my gratitude to Prof. V. Trivedi for her
continuous encouragement and insightful discussions.

2. Density functions on projective toric varieties

In this paper we work over an algebraically closed field K with char p > 0. Let N
be a lattice (which is isomorphic to Zd−1) and let M = Hom(N ,Z) denote the dual
lattice with a dual pairing 〈 , 〉. Let T = Spec(K[M]) be the torus with character
lattice M and let X be a complete toric variety over K with fan ∆ ⊂ N ⊗ R := NR.
The irreducible subvarieties of codimension 1 of X which are stable under the action of
the torus T correspond to the edges (one dimensional cones) of ∆. If τ1, . . . , τn denote
the edges of the fan ∆, then these divisors are the orbit closures Di = V (τi). Let vi be
the first lattice point along the edge τi. A very ample T -Cartier divisor D =

∑

i aiDi

(ai ∈ Z) determines a convex lattice polytope in MR := M⊗ R defined by

PD = {u ∈ MR | 〈u, vi〉 ≥ −ai for all i } (2.1)

and the induced embedding of X in Pl−1 is given by

φ = φD : X → Pl−1, x 7→ (χu1(x) : · · · : χul(x)),

where PD ∩M = {u1, u2, . . . , ul} (for more detailed discussion, see [Ful93]).
The ring K[χ(u1,1), . . . , χ(ul,1)] is the homogeneous coordinate ring of X with respect

to this embedding. We have an isomorphism of graded rings [CLS11, Proposition 1.1.9]

K[Y1, . . . , Yl]

I
≃ K[χ(u1,1), . . . , χ(ul,1)] =: R, (2.2)

where, the kernel I is generated by the binomials of the form

Y a1
1 Y a2

2 · · ·Y al
l − Y b1

1 Y b2
2 · · ·Y bl

l

where a1, . . . , al, b1, . . . , bl are nonnegative integers satisfying the equations

a1u1 + · · ·+ alul = b1u1 + · · ·+ blul and a1 + · · ·+ al = b1 + · · ·+ bl.

Due to this isomorphism, we can consider R = K[S] as a standard graded ring with
deg(χ(ui,1)) = 1, where S is the semigroup generated by 〈(PD ∩M)× {z = 1}〉 in Rd.

Let CD be the cone generated by 〈(PD ∩M)× {z = 1}〉 in Rd. The prime ideals of
the polytopal ring R is in one-to-one correspondence with faces of CD, given by

CF ↔ pF := ideal of R generated by the set of monomials {χν | ν ∈ S \ CF} ⊂ R



6 MANDIRA MONDAL

where CF is the face of CD corresponding to a face F of PD [BG09, Proposition 2.36,
Proposition 4.32]. The height one prime ideals correspond to the facets of PD under
this correspondence [BG09, Proposition 4.35]. In this case, the valuation vpF is the
unique extension of the support form σF of CD associated with the facet CF . When
(X,D) is a projectively normal toric pair, i.e., the associated homogeneous coordinate
ring R is an integrally closed domain, the semigroup S = CD ∩ Zd and the divisorial
monomial ideals of R are exactly the R-submodules of R = K[S] whose monomial
basis is determined by a system

{x ∈ Rd | σF (x) ≥ nF , F is a facet of PD}

for nF ∈ Z [BG09, Theorem 4.53]. Let Div(S) denote the subgroup of Div(R) generated
by monomial divisorial prime ideals and let Princ(S) be its subgroup generated by
principal monomial ideals. The class group of the semigroup S, denoted Cl(S) =
Div(S)/Princ(S) is generated by the classes of the ideals pF where F runs over the set
of facets of PD [BG09, Corollary 4.55] and is isomorphic to the group Cl(R), the class
group of R [BG09, Theorem 4.59].

For a toric pair (X,D), let

PD = {p ∈ CD | p /∈ (u, 1) + CD, for every u ∈ PD ∩M}. (2.3)

By result of Eto we have eHK(R,m) = Vold(PD) = Vold(PD) [Eto02, Theorem 2].
Here Voln denotes the n-dimensional volume. Moreover,

HKd(R,m)(λ) = Vold−1(PD ∩ {z = λ}) = Vold−1(PD ∩ {z = λ})

for all λ ∈ [0,∞) [MT19, Theorem 1.1]. In particular, it is a piecewise polynomial
function.

We recall the following result from [MT20]:

Theorem 2.1. [MT20, Theorem 2, Corollary 3] Let (R,m) be the homogeneous co-
ordinate ring of dimension d ≥ 3, associated to the projectively normal toric pair
(X,D). Then there exists a finite set v(PD) ⊆ R≥0 such that, for any compact set
V ⊆ R≥0 \ v(PD), the sequence {gn|V }n (as described in (1.1)) converges uniformly to
gR,m|V , where gR,m : R≥0 \ v(PD) −→ R is a continuous function given by

gR,m(λ) = rVold−2 (∂(PD) ∩ ∂(CD) ∩ {z = λ})−
rVold−2 (∂(PD) ∩ {z = λ})

2
.

Moreover, we have

β(R,m) =

∫ ∞

0

gR,m(λ)dλ = rVold−1 (∂(PD) ∩ ∂(CD))−
rVold−1 (∂(PD))

2
.

Throughout the paper, we use the following notations.

Notations 2.2. (1) For a facet F of PD, let CF be the corresponding facet of
CD with supporting hyperplane HF and support form σF : Rd −→ R. Hence
HF = {x ∈ Rd | σF (x) = 0} and CF = CD ∩HF . Note that

CD = ∩{F |F is a facet of PD}{x ∈ Rd | σF (x) ≥ 0}.

(2) Cu = (u, 1) + CD for u ∈ PD ∩M.
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(3) For the ideal I = pF , we set

CI = {x ∈ CD | σF (x) > 0}.

(4) For a set A ⊂ MR × R ≃ Rd, we denote

A ∩ {z = λ} := A ∩ {(x, λ) | x ∈ Rd−1}.

(5) For a bounded set A ⊂ Rd, we set L(A) = A ∩ (M× Z) = the (finite) set of
lattice points of A.

(6) For m ∈ Z, let us denote the set of lattice points in the hyperplane {z = m}
by Λm, i.e., Λm = Zd−1 × {z = m} ⊆ Rd.

Lemma 2.3. Let CF ⊂ CD be the cone generated by the facet F of PD. Then

(1) for q ∈ N, we have CF \ ∪u∈L(PD)q(u, 1) + CD = CF \ ∪u∈L(F )q(u, 1) + CF .
(2) [CD \ ∪u∈L(PD)Cu] ∩ CF = CF \ ∪u∈L(PD)Cu = CF \ ∪u∈L(F )(u, 1) + CF .

Proof. Proof of Part (1): Since ∪u∈L(PD)q(u, 1)+CD ⊃ ∪u∈L(F )q(u, 1)+CF , it is enough
to show

CF ∩ [∪u∈L(PD)q(u, 1) + CD] = ∪u∈L(F )q(u, 1) + CF .

Let x ∈ CF ∩ [∪u∈L(PD)q(u, 1)+CD]. Choose u0 ∈ L(PD) such that x = q(u0, 1)+ y for
some y ∈ CD. Since x ∈ CF , we have 0 = σF (x) = qσF (u0, 1) + σF (y). This implies
σF (u0, 1) = σF (y) = 0, i.e., (u0, 1), y ∈ CF . Hence x ∈ ∪u∈L(F )q(u, 1)+CF . The reverse
inclusion follows since σF ((u, 1) + y) = 0 for all u ∈ L(F ) and y ∈ CF .

Proof of Part (2): The first equality is obvious. The second equality follows from
Part (1). �

Remark 2.4. Let (R,m) be the homogeneous coordinate ring of dimension d ≥ 3,
associated to the projectively normal toric pair (X,D). Let I be a monomial prime
ideal of height one, associated to a facet F of the polytope PD and let fR,m be HK

density function of the standard graded ring R := R/I with respect to its homogeneous
maximal ideal m = m/I. For λ ∈ [0,∞) and q = pn, n ∈ N, we have fR,m(λ) =

limn fn(R,m)(λ)

= lim
n

1

qd−2
ℓ

(

R

m[q] + I

)

⌊qλ⌋

= lim
n

1

qd−2
#
[

(CF \ ∪u∈L(PD)q(u, 1) + CD) ∩ Λ⌊qλ⌋

]

= lim
n

1

qd−2
#
[

(CF \ ∪u∈L(F )q(u, 1) + CF ) ∩ Λ⌊qλ⌋

]

.

3. The boundary of PD parallel to the facet CF of the cone CD

In this section, we study the set ∂(PD), the set ∂(PD) ∩ {x ∈ CD | σF (x) = µ},
where µ = σF (u, 1) for some u ∈ L(PD \ F ). We also study the coefficient of the
Ehrhart quasi-polynomial of certain polytopes lying inside ∂(PD). We set the following
notations first:

Notations 3.1. (1) For a convex polytope Q, let v(Q) = {vertices of Q} and
F(Q) = {facets of Q}.

(2) For a convex polytope Q ⊂ Rd, and for λ ∈ [0,∞] we set Qλ = Q ∩ {z = λ}.
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(3) For a set F ⊆ Rd, ∂(F ) = boundary of F in Rd and F ◦ = F \ ∂(F ) = interior
of F in Rd.

(4) For a set F ⊆ Rd, ∂C(F ) = boundary of F in CD in the subspace topology of
CD, thinking of CD ⊆ Rd.

(5) For a set F ⊆ Rd, we denote A(F ) = affine hull of F in Rd, the smallest affine
set containing F , i.e., A(F ) = {

∑m
i aifi | m ∈ N, ai ∈ R, fi ∈ F,

∑m
i=1 ai = 1}.

(6) For a set F ⊆ Rd, we say y ∈ relint(F ), the relative interior of F , if there exists
ǫ > 0 such that Bd(y, ǫ) ∩ A(F ) ⊆ F . Here Bd(y, ǫ) denotes the d-dimensional
ball of radius ǫ around y.

(7) For a facet F of PD, and for µ ∈ Q>0, we set HF,µ = {x ∈ Rd | σF (x) = µ}.
(8) Let µD,F := {µ ∈ Q>0 | σF (u, 1) = µ for some u ∈ L(PD \ F )}.
(9) ∂D,F = ∪µ∈µD,F

∂(PD) ∩HF,µ.

For a toric pair (X,D), a decomposition of CD = ∪s
j=1Fj was given in [MT19, Lemma

4.5], (for d ≥ 3, as d = 2 corresponds to (P1,OP1(n)), for n ≥ 1, which is easy to handle
directly), where Fj’s are d-dimensional cones such that, each Pj := Fj ∩PD is a convex
rational polytope and is a closure of P ′

j := Fj ∩ PD. In [MT20], the boundary of PD

was studied and described in terms of the facets of Pj’s. We recall the decomposition
of CD and few properties of ∂(PD) from [MT19] and [MT20] which are relevant for this
work.

The cone Fj ∈ {d-dimensional cones}, which is the closure of a connected component
of CD \ ∪iuHiu, where the hyperplanes Hiu are given by

Hiu = the affine hull of {(vik, 1), (u, 1), (0) | vik ∈ v(C0i), u ∈ L(PD)},

where C0i ∈ {(d−3) dimensional faces of PD} and 0 is the origin of Rd. For u ∈ L(PD),
let

P ′
j = Fj ∩ ∩u∈L(PD)(Cu)

c = Fj ∩ ∩u∈L(PD)[CD \ Cu],

which is a convex set [MT19, Lemma 4.5] and Pj = Fj ∩ ∩u∈L(PD)(CD \ Cu) is the
d-dimensional convex rational polytope which is the closure of P ′

j in CD (which equals

the closure in Rd).
Therefore

PD = ∪s
j=1P

′
j and PD = ∪s

j=1Pj ,

where P1, . . . , Ps are distinct polytopes, whose interiors are disjoint. Moreover, facets
of each Pj are transversal to the z-hyperplane, i.e., dim(∂(Pj) ∩ {z = λ}) < d − 1 for
all λ ∈ R and for all j. Note that

Pj = Fj \ ∪u∈L(PD)Cu = ∩u∈L(PD)Fj \ Cu = P ′
j ⊔

(

∪u∈L(PD)∂C(Cu) ∩ Pj

)

and ∂C(Cu) ∩ Pj = ∪{E|E∈F(Cu), E 6⊆∂(CD)}E ∩ Pj [MT20, Lemma 8]. Moreover, for any
facet E ∈ F(Pj), either E ⊂ Eji, for some facet Eji ∈ F(Fj); or F ⊂ Fuν

, for some
facet Fuν

∈ F(Cu) and u ∈ L(PD). In the later case F = Pj ∩ Fuν
= Pj ∩ A(Fuν

),
where Fuν

6⊆ ∂(CD) [MT20, Lemma 9]. Finally we record [MT20, Lemma 10] which
gives the explicit description of ∂(PD) as follows:

Lemma 3.2. (1) ∂(PD) = ∪{E∈F(Pj)|E 6=Pi∩Pj}E. In particular

(2) ∂(PD) =
⋃

{E∈F(CD)}E ∩ PD ∪
⋃

{E∈F(Cu),u∈L(PD)} E ∩ PD.
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Lemma 3.3. Suppose v ∈ L(PD) \ L(F ′) for some F ′ ∈ F(PD).

(1) Then there exists a d-dimensional cone Fj occurring in the decomposition of
CD such that (v, 1) ∈ Fj and [(v, 1) + CF ′] ∩ F ◦

j 6= ∅.

(2) Moreover, dim(∂(Pj)∩ [(v, 1)+CF ′]) = d− 1, i.e., there exists Ẽ ∈ F(Pj) such

that Ẽ ⊂ (v, 1) + CF ′.

Proof. Proof of Part (1): We choose small ǫ > 0 such that Bd((v, 1), ǫ) ∩ Fj = ∅ for
all cones Fj in the decomposition of CD with (v, 1) /∈ Fj . Therefore [(v, 1) + CF ′] ∩
Bd((v, 1), ǫ) ⊆ ∪(v,1)∈Fj

Fj. If

[(v, 1) + CF ′] ∩Bd((v, 1), ǫ) ⊆ ∪(v,1)∈Fj
∂Fj ,

then d−1 = dim([(v, 1)+CF ′]∩Bd((v, 1), ǫ)) = dim([(v, 1)+CF ′]∩Bd((v, 1), ǫ)∩∂Fj0)
for some Fj0 containing (v, 1). Hence

A((v, 1) + CF ′) = A([(v, 1) + CF ′] ∩Bd((v, 1), ǫ)) = A(F ′′)

for some F ′′ ∈ F(Fj0). This is a contradiction since F ′′ passes through origin in Rd,
whereas 0 /∈ A((v, 1) + CF ′) since (v, 1) /∈ CF ′. Hence [(v, 1) + CF ′] ∩ F ◦

j 6= ∅ for some
Fj containing (v, 1).

Proof of Part (2): We take a cone Fj such that (v, 1) ∈ Fj and [(v, 1)+CF ′]∩F ◦
j 6= ∅.

Note that dim([(v, 1)+CF ′]∩F ◦
j ) = d−1. By the claim in the proof of [MT20, Lemma

9(2)], we have [(v, 1) + CF ′] ∩ Fj = A((v, 1) + CF ′) ∩ Fj . Hence

[(v, 1) + CF ′] ∩ F ◦
j ⊆ relint((v, 1) + CF ′),

and dim(relint((v, 1) + CF ′) ∩ F ◦
j ) = d − 1. Since (v, 1) ∈ Fj, this implies for any ball

Bd((v, 1), ǫ) around (v, 1) of radius ǫ > 0, we have

dim(relint((v, 1) + CF ′) ∩ F ◦
j ∩Bd((v, 1), ǫ)) = d− 1. (3.1)

Since (v, 1) /∈ (u, 1) + CD for all u ∈ L(PD) \ {v}, we can take small ǫ̃ > 0 such that
Bd((v, 1), ǫ̃) ∩ [(u, 1) + CD] = ∅ for all u ∈ L(PD) \ {v}. For any

y ∈ relint((v, 1) + CF ′) ∩ F ◦
j ∩ Bd((v, 1), ǫ̃),

we may choose ǫy > 0 small enough such that Bd(y, ǫy) ⊆ F ◦
j ∩ Bd((v, 1), ǫ̃) and

Bd(y, ǫy) ∩ A((v, 1) + CF ′) ⊆ relint((v, 1) + CF ′). Therefore,

Bd(y, ǫy) ∩ P
′
j = Bd(y, ǫy) \ ∪u∈L(PD)(u, 1) + CD = Bd(y, ǫy) \ (v, 1) + CD 6= ∅.

Hence relint((v, 1) + CF ′) ∩ F ◦
j ∩ Bd((v, 1), ǫ̃) ⊆ ∂(P ′

j) = ∂(Pj). From (3.1), we have
dim([(v, 1) + CF ′] ∩ ∂(Pj)) = d− 1. �

Lemma 3.4. (1) For µ ∈ Q>0, let

AF,µ = (∪ u∈L(PD),

σF (u,1)=µ

(u, 1) + CF ) \ (∪ v∈L(PD),

σF (v,1)<µ

(v, 1) + CD).

Then
AF,µ ⊆ ∂(PD) ∩HF,µ for all µ ∈ Q>0.

(2) ∂(PD) ∩HF,µ ⊆ AF,µ ∪BF,µ ∪ [∂(PD) ∩ ∂(CD) ∩HF,µ] where

BF,µ =
[

∪v∈L(PD),σF (v,1)<µ

F 6=F ′∈F(PD)

(v, 1) + CF ′

]

∩HF,µ ∩ ∂(PD).
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Proof. Proof of Part (1): Let x ∈ AF,µ, i.e., x ∈ ((u, 1) +CF ) \ (∪ v∈L(PD),

σF (v,1)<µ

Cv) for some

u ∈ L(PD \F ) with σF (u, 1) = µ. Choose a small neighbourhood around x of radius ǫ,
Bd(x, ǫ) ⊂ Rd \ (∪ v∈L(PD),

σF (v,1)<µ

Cv). Note that if Bd(x, ǫ) ∩ {y ∈ CD | σF (y) < µ} = ∅ then

Bd(x, ǫ) ∩ CD ⊂ {σF ≥ µ} which is a contradiction since σF (x) = µ > 0 and we have
x̃ ∈ CD with σF (x̃) < µ. Hence,

∅ 6= Bd(x, ǫ) ∩ {y ∈ CD | σF (y) < µ} ⊂ CD \ (∪v∈L(PD)Cv) = PD,

which gives x ∈ PD. Since AF,µ ∩ PD = ∅, this implies AF,µ ⊆ ∂(PD) ∩HF,µ.

Proof of Part (2): It is enough to show that [∂(PD) \ ∂(CD)]∩HF,µ ⊆ AF,µ∪BF,µ. Let
x ∈ [∂(PD) \∂(CD)]∩HF,µ. Then by Lemma 3.2(2), x ∈ E where E ∈ F(Cu) for some
u ∈ L(PD). We split the proof in two cases.
Case (1): Suppose E = (u, 1) + CF for some u ∈ L(PD). This implies σF (u, 1) = µ.
Suppose x /∈ AF,µ. This implies x ∈ (v, 1)+CD for some v ∈ L(PD) with σF (v, 1) < µ.
Since x ∈ ∂(PD), we have x /∈ (v, 1) + C◦

D, i.e., x ∈ ∪F ′∈F(PD)(v, 1) + CF ′. But x /∈
(v, 1)+CF since σF (v, 1) < µ = σF (x). Hence x ∈

[

∪F 6=F ′∈F(PD) (v, 1)+CF ′

]

∩HF,µ ∩
∂(PD) ⊆ BF,µ.
Case (2): Suppose x /∈ (u, 1) + CF for all u ∈ L(PD). Then E = (v, 1) + CF ′ for
some v ∈ L(PD) and F

′ ∈ F(PD) with F 6= F ′. Since x /∈ (v, 1) + CF we must have
σF (v, 1) < µ. Hence x ∈ BF,µ. This proves Part (2). �

Definition 3.5. We recall the definition of Ehrhart quasi-polynomial of a convex poly-
tope P ⊂ Rd. The function i(P,−) : N −→ N given by

i(P, n) := #(nP ∩ Zd) =

dim(P )
∑

j=0

Cj(P, n)n
j,

is a quasi-polynomial of degree dim(P ), i.e., the coefficient Cj(P, n) of nj is periodic
in n for all j = 0, . . . , n, and Cdim(P ) is not identically zero. Moreover Cdim(P ) =
rVoldim(P )(P ) if A(P ) ∩ Zd 6= ∅.

Notations 3.6. (1) In the rest of the paper, for a bounded set Q ⊂ Rd and for
n,m ∈ N, we define

i(Q, n,m) := #(nQ ∩ {z = m} ∩ Zd), (3.2)

where z is the dth coordinate function on Rd.
(2) Let v(PD) := ∪s

j=1π(v(Pj)), where π : Rd −→ R is the projection given by
projecting to the last coordinate z and the set π(v(Pj)) = {ρj1, . . . , ρjmj

},
with ρj1 < ρj2 < · · · < ρjmj

.

(3) Let S = {m/q | q = pn, m, n ∈ Z≥0} \ v(PD).

Lemma 3.7. Let µ ∈ Q>0. There exists a finite set SF ⊂ [0,∞) such that for λ ∈ S\SF

and q = pn, n ∈ N, such that qλ ∈ Z≥0,

(1) there exists a constant Cµ > 0 (independent of λ ∈ S and n ∈ N) such that

i([∂(PD) ∩HF,µ] \ AF,µ, q, qλ) = cµ(λ, n)q
d−3
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for some constant cµ(λ, n) with |cµ(λ, n)| < Cµ.
(2) there exists a constant C1 > 0 (independent of λ ∈ S \SF and n ∈ N) such that

i(∂D,F , q, qλ) = i(AF , q, qλ) + c
(1)
λ (n)qd−3

for some constant c
(1)
λ (n) with |c(1)λ (n)| < C1. Here AF = ∪µ∈µD,F

AF,µ and ∂D,F

is as in Notations 3.1(9).

Proof. Proof of Part (1): By Lemma 3.4(2),

[∂(PD) ∩HF,µ] \ AF,µ ⊆ BF,µ ∪ [∂(PD) ∩ ∂(CD) ∩HF,µ].

Note that BF,µ =
[

∪v∈L(PD),σF (v,1)<µ

F 6=F ′∈F(PD)

(v, 1) + CF ′

]

∩HF,µ ∩ ∂(PD)

=
⋃

{E∈F(Pj) | E 6=Pi∩Pj}j
{F ′∈F(PD) | F ′ 6=F}

{v∈L(PD) | σF (v,1)<µ}

E ∩ ((v, 1) + CF ′) ∩HF,µ. (3.3)

The second equality follows from the description of ∂(PD) in Lemma 3.2(1). Note that

∂(PD) ∩ ∂(CD) ∩HF,µ = ∪{F ′∈F(PD) | F ′ 6=F}CF ′ ∩ ∂(PD) ∩HF,µ.

Again by Lemma 3.2(1),

∂(PD) ∩ ∂(CD) ∩HF,µ =
⋃

{E∈F(Pj) | E 6=Pi∩Pj}

{F ′∈F(PD) | F ′ 6=F}

E ∩ CF ′ ∩HF,µ. (3.4)

For each convex rational polytope Q appearing in the union (in the right hand side)
of Equation (3.3) and Equation (3.4), we have dim(Q) ≤ d − 2, since the facet CF ′

is transversal to HF,µ for all F 6= F ′ ∈ F(PD). Write BF,µ ∪ [∂(PD) ∩ ∂(CD) ∩
HF,µ] = ∪γ∈ΓQγ where Γ is a finite index set indexing the finitely many rational
polytopes appearing in Equation (3.3) and Equation (3.4). Since dim(Qγ) ≤ d − 2, if
dim(Qγ ∩{z = λγ}) = d−2 for some λγ ∈ [0,∞), then Qγ ⊂ {z = λγ} [MT20, Lemma
14(1)]. Hence for atmost one λ ∈ [0,∞), we have dim(Qγ ∩{z = λ}) = d− 2. Let SF,µ

denote the (finite) set of all such λ ’s, i.e., SF,µ := {λ ∈ [0,∞) | dim(Qγ ∩ {z = λ}) =
d− 2 for some γ ∈ Γ}.

Now
i([∂(PD) ∩HF,µ] \ AF,µ, q, qλ) ≤ i(∪γ∈ΓQγ , q, qλ)

=
∑

γ∈Γ

i(Qγ , q, qλ) +
∑

α∈Γ′

ǫαi(Q
′
α, q, qλ) (3.5)

where Γ′ is a index set indexing the rational polytopes which are (finite) intersection
of rational polytopes from the set {Qγ | γ ∈ Γ} and ǫα ∈ {−1, 1} depending on α ∈ Γ′.
By [MT20, Lemma 49], for all λ ∈ S \ SF,µ and for all Q = Qγ1 ∩ · · · ∩ Qγk (k ≥ 1),
where γi ∈ Γ, there exists positive constant CQ (independent of λ and n) such that

i(Q, q, qλ) = i(Qλ, q) = cQλ(n)q
d−3

for some constant cQλ
(n) with |cQλ

(n)| < CQ. Hence the assertion in Part (1) follows
from Equation (3.5).
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Proof of Part (2): We set SF := ∪µ∈µD,F
SF,µ. The proof follows immediately from

Part (1) since the set µD,F is finite. �

Lemma 3.8. Let Q be the convex polytope E ∩HF,µ for µ ∈ µD,F and E ∈ F(Pj) for
some j ∈ {1, . . . , s}. Let λ ∈ S. Suppose, q = pn for some n ∈ N such that qλ ∈ Z.
Then

(1) Cd−2(Qλ, q) = rVold−2(Qλ).

(2) If dim(Q) = d − 1, then for all j = 1, . . . , d − 3, we have Cj(Qλ, q) < C̃Q for

some constant C̃Q independent of λ and n.
(3) (a) If dim(Q) = d− 2 and Q is transversal to the {z = 0} hyperplane, or

(b) if dim(Q) < d− 2,
then i(Qλ, q) ≤ C ′

Qq
d−3 for some constant C ′

Q independent of λ and n.

Proof. We set m = qλ.
Proof of Part (1): We know dim(E) = d − 1 and E is transversal to the {z = 0}

hyperplane. Hence dim(Qλ) ≤ dim(Eλ) ≤ d− 2. If dim(Qλ) = d− 2, then dim(Qλ) =
dim(Eλ) and

A(qQλ) ∩ Zd = A(qEλ) ∩ Zd = A(qEλ ∩ {z = m}) ∩ Zd 6= ∅,

by [MT20, Lemma 14(3)]. Therefore, by the proof of Case (a), [MT20, Lemma 33(1)],
we have Cd−2(Qλ, q) = rVold−2(Qλ). If dim(Qλ) < d−2, then by the proof of Case (b),
[MT20, Lemma 33(1)], we have Cd−2(Qλ, q) = 0 = rVold−2(Qλ).

Proof of Part (2) follows from the proof of Part (a) of [MT20, Lemma 33(2)].
Proof of Part (3) follows from the proof of Part (b) of [MT20, Lemma 33(2)]. �

Definition 3.9. We define the set

TF = ∪{E∈F(Pj)|E 6=Pi∩Pj}j
µ∈µD,F

{λ ∈ [0,∞) | dim(E ∩HF,µ) = dim((E ∩HF,µ)λ) = d− 2}.

Note that the set TF is finite.

Remark 3.10. Recall the set SF defined in the proof of Lemma 3.7. We remark that
SF ⊆ v(PD) ∪ TF . To prove this we first note that SF = S1 ∪ S2, where

S1 =
⋃

µ∈µD,F

{E∈F(Pj) | E 6=Pi∩Pj}j
{F ′∈F(PD) | F ′ 6=F}

{λ ∈ [0,∞) | dim((E ∩ CF ′ ∩HF,µ)λ) = d− 2}

and

S2 =
⋃

µ∈µD,F ,v∈L(PD)
{E∈F(Pj) | E 6=Pi∩Pj}j
{F ′∈F(PD) | F ′ 6=F}

{λ ∈ [0,∞) | dim((E ∩ ((v, 1) + CF ′) ∩HF,µ)λ) = d− 2}.

Hence, SF ⊆ SF,1 ∪ SF,2 ∪ TF where

SF,1 =
⋃

µ∈µD,F

{E∈F(Pj) | E 6=Pi∩Pj}j
{F ′∈F(PD) | F ′ 6=F}

{λ ∈ [0,∞) | E ⊆ HF,µ, dim((E ∩ CF ′)λ) = d− 2}
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and

SF,2 =
⋃

µ∈µD,F ,v∈L(PD)
{E∈F(Pj) | E 6=Pi∩Pj}j
{F ′∈F(PD) | F ′ 6=F}

{λ ∈ [0,∞) | E ⊆ HF,µ, dim((E ∩ [(v, 1) + CF ′])λ) = d− 2}.

It is enough to show SF,1∪SF,2 ⊆ v(PD). Suppose λ ∈ SF,1, i.e., dim((E∩CF ′)λ) = d−2
for some F ′ ∈ F(PD) with F ′ 6= F and E ∈ F(Pj) such that E ⊆ HF,µ for some
µ ∈ µD,F and E 6= Pi ∩ Pj for all i ∈ {1, . . . , s}. Since dim(CF ′ ∩ PD) = d − 1,

there exists Ẽ ∈ F(Pk) for some k ∈ {1, . . . , s} such that Ẽ ⊆ CF ′. This implies

E ∩ Ẽ ⊆ {z = λ}, hence λ ∈ v(PD).
Now suppose λ ∈ SF,2 and dim((E ∩ [(v, 1) + CF ′])λ) = d − 2 where F ′ ∈ F(PD)

with F ′ 6= F , v ∈ L(PD) and E ∈ F(Pj) for some j ∈ {1, . . . , s} such that E ⊆ HF,µ

and E 6= Pi ∩Pj for all i ∈ {1, . . . , s}. If v ∈ L(F ′), then λ ∈ SF,1 ⊆ v(PD). Therefore,
we assume v ∈ L(PD) \ L(F ′). By Lemma 3.3, there exists E1 ∈ F(Pk) for some
k ∈ {1, . . . , s} such that E1 ⊂ (v, 1) + CF ′. Hence E ∩ E1 ⊆ {z = λ}, i.e., λ ∈ v(PD).

4. β-density function for I = pF

In the rest of the paper, we assume (X,D) is a projectively normal toric pair.

Lemma 4.1. The ideal I = pF is generated by the set {χ(u,1) | u ∈ L(PD \ F )}.

Proof. For x ∈ Zd−1 and any integer m ≥ 2 with (x, m) ∈ CI ∩ (Λm), it is enough
to show there exists u ∈ PD ∩ M such that (x, m) − (u, 1) ∈ CI ∩ (Λm−1). Now
(x, m) =

∑

u∈L(PD) au(u, 1) for au ∈ Z≥0 (since PD is a normal polytope) and

1 < m =
∑

u∈L(PD)

au =
∑

u∈L(PD\F )

au +
∑

u∈L(F )

au.

If
∑

u∈L(F ) au ≥ 1, then choose u0 ∈ L(F ) such that au0 ≥ 1. Since (x, m) ∈ CI ,

we have
∑

u∈L(PD\F ) au > 0, hence (x, m) − (u0, 1) ∈ CI ∩ (Λm−1). If
∑

u∈F au = 0,

then
∑

u∈L(PD\F ) au = m > 1. We choose u0 ∈ L(PD \ F ) such that au0 ≥ 1. Then

(x, m)−(u0, 1) =
∑

u0 6=u∈L(PD\F ) au(u, 1)+(au0−1)(u0, 1) and σF ((x, m)−(u0, 1)) > 0,

i.e., (x, m)− (u0, 1) ∈ CI ∩ (Λm−1). �

Definition 4.2. For the monomial prime ideal I = pF of R,

(1) we define a sequence of functions {ψn : [0,∞) −→ R≥0}n∈N given by

ψn(λ) =
1

qd−2
ℓ

(

m[q] ∩ I

m[q]I

)

⌊qλ⌋

.

(2) We define the ‘small density function’ ΨF : [0,∞) −→ R≥0, given by

ΨF (λ) =
∑

µ∈µD,F

rVold−2(∂(PD) ∩HF,µ ∩ {z = λ}) = rVold−2(∂D,F ∩ {z = λ}).

Here for Q = ∪iQi, a finite union of convex rational polytopes Qi ⊂ Rd with
dim(Qi) ≤ d′, such that dim (Qi ∩Qj) < d′, for Qi 6= Qj, we define rVold′Q =
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∑

i rVold′Qi and rVold′′Q = 0, if d′′ > d′. For a detailed discussion of the
definition of relative volume, see [MT20, Appendix A, Definition 47].

Remark 4.3. Recall the set TF described in Definition 3.9. Note that for all λ ∈
[0,∞) \ TF ,

ΨF (λ) =
∑

µ∈µD,F

∑

{E∈F(Pj)|E 6=Pi∩Pj}j

rVold−2(E ∩HF,µ ∩ {z = λ}).

Remark 4.4. Suppose Q = E ∩HF,µ for some E ∈ F(Pj), µ ∈ µD,F and suppose the
function ψQ : [0,∞) −→ R≥0, given by

ψQ(λ) = rVold−2(Q ∩ {z = λ}).

If dim(Q) = d − 1, then E ⊆ HF,µ and Q = E. Therefore ψQ : [0,∞) \ v(PD) −→
R≥0, given by λ −→ rVold−2(Q ∩ {z = λ}) is continuous, by [MT20, Remark 36].
If dim(Q) = d − 2 and Q is transversal to the {z = 0} hyperplane or dim(Q) ≤
d − 3, then dim(Qλ) ≤ d − 3, hence ψQ = 0 on [0,∞). If dim(Q) = d − 2 and
dim(Q ∩ {z = λ0}) = d − 2 for some λ0 ∈ [0,∞), then Q ⊆ {z = λ0}. Hence
ψQ(λ0) = rVold−2(Q∩{z = λ0}) and ψQ(λ) = 0 for all λ 6= λ0. Hence, by Remark 4.3,
the function ΨF : [0,∞)\(v(PD)∪TF ) −→ R≥0, given by λ 7→ rVold−2(∂D,F∩{z = λ}) is
continuous. Moreover, ΨF is a compactly supported and piecewise polynomial function
[MT20, Remark 36].

Lemma 4.5. For all λ ∈ [0,∞) and q = pn ∈ N with λn := ⌊qλ⌋/q ∈ S \ (v(PD)∪TF ),
we have

ψn(λ) = ΨF (λn) + cλ(n)/q, for some constant cλ(n),

such that |cλ(n)| < C, where C is a constant independent of λ and n ∈ N.

Proof. For λ ∈ R≥0 and q = pn, let m = ⌊qλ⌋. Note that

ℓ(m[q] ∩ I)m = #
[(

(∪u∈L(PD)q(u, 1) + CD) \ CF

)

∩ (Λm)
]

= #
[

(∪u∈L(PD)q(u, 1) + CD) \ (CF ∩ [∪u∈L(PD)q(u, 1) + CD]) ∩ (Λm)
]

.

By proof of Lemma 2.3, we have

ℓ(m[q] ∩ I)m = #
[

(∪u∈L(PD)q(u, 1) + CD) \ (∪u∈L(F )q(u, 1) + CF ) ∩ (Λm)
]

= #
[

(∪u∈L(PD\F )q(u, 1) + CD) ∪ (∪u∈L(F )q(u, 1) + [CD \ CF ]) ∩ (Λm)
]

. (4.1)

By Lemma 4.1,

ℓ(m[q]I)m = #
[

(∪u∈L(PD),v∈L(PD\F )q(u, 1) + (v, 1) + CD) ∩ (Λm)
]

= #
[

(∪u∈L(PD)q(u, 1) + [CD \ CF ]) ∩ (Λm)
]

. (4.2)

The last equation follows since, (X,D) is projectively normal, i.e., PD is a normal
polytope.
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From Equation (4.1) and Equation (4.2), we have

ψn(λ) =
1

qd−2
#
[

(∪u∈L(PD\F )q(u, 1) + CF ) \ (∪u∈L(PD)q(u, 1) + [CD \ CF ]) ∩ (Λm)
]

=
1

qd−2
#
[

⋃

µ∈µD,F

(∪ u∈L(PD),

σF (u,1)=µ

q(u, 1) + CF ) \ (∪ v∈L(PD),

σF (v,1)<µ

q(v, 1) + CD) ∩ (Λm)
]

=
1

qd−2
#[qAF ∩ (Λm)

]

=
1

qd−2
i(AF , q, qλn), where AF is as in Lemma 3.4. (4.3)

If λn /∈ SF , by Equation (4.3) and Lemma 3.7(2), we have

ψn(λ) = i(∂D,F , q, qλn)/q
d−2 − c

(1)
λn
(n)/q

such that |c(1)λn
(n)| < C1 for some constant C1, independent of λ and n. Hence

ψn(λ) =
1

qd−2
#[q(∂D,F ) ∩ (Λqλn

)
]

−
c
(1)
λn
(n)

q

=
1

qd−2
#
[

∪{E∈F(Pj)|E 6=Pi∩Pj}j
µ∈µD,F

q(E ∩HF,µ) ∩ (Λqλn
)
]

−
c
(1)
λn
(n)

q

=
1

qd−2

∑

µ∈µD,F

∑

{E∈F(Pj)|E 6=Pi∩Pj}j

#[q(E ∩HF,µ) ∩ (Λqλn
)]

+
1

qd−2

∑

α∈J

ǫα#[qKα ∩ (Λqλn
)]−

c
(1)
λn
(n)

q

where J is the index set indexing the (finite) intersections of elements of the set ∪j{E ∈
F(Pj) | E 6= Pi ∩ Pj}j , further intersecting with HF,µ for some µ ∈ µD,F , i.e., Kα =
Eα1 ∩ · · · ∩ Eαl

∩ HF,µ for Eαi
∈ ∪j{E ∈ F(Pj) | E 6= Pi ∩ Pj} with l ≥ 2 and for

some µ ∈ µD,F ; ǫα ∈ {1,−1}, depending on the Kα ∈ J . Hence ψn(λ)

=
1

qd−2

∑

{E∈F(Pj)|E 6=Pi∩Pj}j
µ∈µD,F

i(E ∩HF,µ, q, qλn) +
1

qd−2

∑

α∈J

ǫαi(Kα, q, qλn)−
c
(1)
λn
(n)

q

=
1

qd−2

∑

E,µ

i((E ∩HF,µ)λn
, q) +

1

qd−2

∑

α∈J

ǫαi((Kα)λn
, q)−

c
(1)
λn
(n)

q
. (4.4)

From Equation (4.4) and using Lemma 3.8, we have for all λn /∈ TF ,

ψn(λ) =
∑

µ∈µD,F

∑

{E∈F(Pj)|E 6=Pi∩Pj}j

rVold−2(E ∩HF,µ ∩ {z = λn})

+
c
(2)
λ (n)

q
+

1

qd−2

∑

α∈J

ǫαi((Kα)λn
, q)−

c
(1)
λn
(n)

q
; (4.5)
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for real number c
(2)
λ (n) such that |c(2)λ (n)| ≤ C2 for some constant C2 independent of λ

and n. Note that dim(Kα) ≤ d−2 for all α ∈ J . SupposeKα = Eα1∩· · ·∩Eαr
∩HF,µ for

some µ ∈ µD,F and Eαi
∈ ∪j{E ∈ F(Pj) | E 6= Pi ∩ Pj} with r ≥ 2. If dim((Kα)λ) =

d − 2 for some λ ∈ [0,∞), then dim(Eα1 ∩ Eα2) = dim((Eα1 ∩ Eα2)λ) = d − 2. Hence
Eα1 ∩ Eα2 ⊆ {z = λ}, i.e., λ ∈ v(PD). Therefore, for all λ ∈ [0,∞) and q = pn ∈ N

with λn ∈ S \(v(PD)∪SF ∪TF ) = S \(v(PD)∪TF ) (by Remark 3.10), we have ψn(λ) =

∑

µ∈µD,F

∑

{E∈F(Pj)|E 6=Pi∩Pj}j

rVold−2(E ∩HF,µ ∩ {z = λn}) +
c
(3)
λ (n)

q
+
c
(2)
λ (n)

q
−
c
(1)
λn
(n)

q
;

such that |c(3)λ (n)| < C3, for some constant C3, independent of λ and n ∈ N [MT20,
Lemma 49]. By Remark 4.3, for all λ ∈ [0,∞), q = pn ∈ N with λn ∈ S \ (v(PD)∪TF ),
we have

ψn(λ) =
∑

µ∈µD,F

rVold−2(∂(PD) ∩HF,µ ∩ {z = λn}) +
c
(3)
λ (n)

q
+
c
(2)
λ (n)

q
−
c
(1)
λn
(n)

q
.

Hence the lemma. �

Lemma 4.6. For λ ∈ [0,∞),

gn(I,m)(λ) = gn(R,m)(λ)− fn(R/I,m/I)(λ) + ψn(λ).

Proof. Let m = ⌊qλ⌋. We have

gn(I,m)(λ) =
1

qd−2
[ℓ(I/m[q]I)m − fI,m(m/q)qd−1]

=
1

qd−2
[ℓ(I/m[q] ∩ I)m + ℓ

(

(m[q] ∩ I)/(m[q]I)
)

m
− fI,m(m/q)qd−1].

Using the additive property of HK density function [Tri18, Proposition 2.14], we have
fI,m(λ) = fR,m(λ) for all λ ∈ [0,∞). Hence we have

gn(I,m)(λ) =
1

qd−2
[ℓ(I/m[q] ∩ I)m − fR,m(m/q)qd−1] + ψn(λ). (4.6)

Note that

ℓ(I/m[q] ∩ I)m = #
[(

[CD \ CF ] \ ∪u∈PD
q(u, 1) + CD

)

∩ (Λm)
]

= #
[(

CD \ ∪u∈L(PD)q(u, 1) + CD

)

∩ (Λm)
]

−#
[(

CF \ ∪u∈L(PD)q(u, 1) + CD

)

∩ (Λm)
]

= #(qPD ∩ Λm)−#
[(

CF \ ∪u∈L(PD)q(u, 1) + CD

)

∩ (Λm)
]

. (4.7)

By Equation (4.6), Equation (4.7) and Remark 2.4, it follows that

gn(I,m)(λ) =
1

qd−2

[

#(qPD ∩ Λm)− fR,m(m/q)qd−1
]

− fn(R/I,m/I)(λ) + ψn(λ)

= gn(R,m)(λ)− fn(R/I,m/I)(λ) + ψn(λ).

�
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Proof of Theorem 1.1. By Remark 4.4, the function ΨF is compactly supported and
is continuous on [0,∞) \ v(PD) ∪ TF . Therefore, by [Tri18, Theorem 1] and Theorem
2.1, the function gI,m = gR,m+fR/I,m/I +ΨF is also continuous on [0,∞)\ v(PD)∪TF .
We set vPD ,F = v(PD) ∪ TF .

Following a similar argument as in [MT20, Lemma 39(1)] and using Lemma 4.5, we
see that for any compact set V ⊆ [0,∞) \ vPD ,F , the sequence of functions {ψn|V }

converges uniformly to the function ΨF . Hence the sequence of functions {g(I,m)
n |V }

converges uniformly to the function gI,m|V follows from Lemma 4.6, [Tri18, Theorem
1.1] and Theorem 2.1. Following a similar argument given in the proof of [MT20,
Corollary 3], we get

∫∞

0
gI,m(λ)dλ = β(I,m).

Corollary 4.7. With the notations as in Theorem 1.1, for a projectively normal toric
pair (X,D), we have

∑

{F |F is facet of PD}

gpF ,m(λ) = (r − 2)gR,m(λ)

for all λ ∈ [0,∞) \ vPD ,F , where r ∈ N is the number of facets of the polytope PD.

Proof. From Theorem 1.1, for λ ∈ [0,∞) \ vPD ,F , we have
∑

F∈F(PD)

gpF ,m(λ) = (r)gR,m(λ)−
∑

F∈F(PD)

fR/pF ,m/pF (λ) +
∑

F∈F(PD)

ΨF (λ)

where r is the number of facets of PD. Hence
∑

F∈F(PD)

gpF ,m(λ) = (r)gR,m(λ)− rVold−2(∂(PD) ∩ ∂(CD) ∩ {z = λ})

+rVold−2([∂(PD) \ ∂(CD)] ∩ {z = λ}) = (r − 2)gR,m(λ).

The last equation follows from the description of gR,m in Theorem 2.1. �

Definition 4.8. For the ideal I = pF , define another function αI,m : [0,∞) −→ R by
setting

αI,m(λ) = gI,m(λ)− gR,m(λ), for λ ∈ [0,∞).

Clearly
∫∞

0
αI,m(λ) = τ

m
(I). Extend this to define a map

α
m

: Cl(R) −→ L1([0,∞)) (the space of integrable functions f : [0,∞) −→ R)

such that it is a group homomorphism. Thus our result gives explicit description of
the map τ

m
: Cl(R) −→ R defined in [HMM04, Theorem 1.9]. In the next section we

compute these functions for some toric pairs.

5. some examples and properties

Example 5.1. In this example, we compute the β-density functions for the toric pair
(X,D) = (P1,OP1(l)) for all l ∈ N. The polytope PD can be taken to be the line segment
[0, l] (up to translation by integral points). The cone

CD = Cone〈(0, 1), (l, 1)〉 = {(x, y) | 0 ≤ x ≤ ly} ⊂ R2.
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Let (R,m) be the associated homogeneous coordinate ring and let I1 and I2 be the
monomial prime ideals associated to the facets CF1 = CD∩{x = 0} and CF2 = CD∩{x =
ly} of CD, respectively. One has

gR,m(λ) =











1 if 0 ≤ λ < 1,

−l if 1 ≤ λ < 1 + 1
l
,

0 if λ > 1 + 1
l
,

and

gI1,m(λ) = gI2,m(λ) = 0 for all λ ≥ 0.

Example 5.2. In this example we compute the β-density functions for the toric pair
(X,D) = (P2,OP2(1)). The polytope PD is the convex hull of the points (0, 0), (0, 1)
and (1, 0) in R2 (up to translation by integral points). The cone

CD = Cone〈(0, 0, 1), (0, 1, 1), (1, 0, 1)〉 = {(x, y, z) | x, y ≥ 0, x+ y ≤ z} ⊂ R2.

Let (R,m) be the associated homogeneous coordinate ring and let J1, J2 and J3 be the
monomial prime ideals associated to the facets CF1 = CD∩{x = 0}, CF2 = CD∩{y = 0}
of CD and CF3 = CD ∩ {x+ y = z}, respectively. One has

gJi,m(λ) =



















λ/2 if 0 ≤ λ < 1,

−λ + 3/2 if 1 ≤ λ < 2,

λ/2− 3/2 if 2 ≤ λ < 3,

0 if λ ≥ 3,

and

gR,m(λ) = 3gJi,m(λ) for all λ ≥ 0.

Remark 5.3. By Theorem 2.1, for λ ∈ [0,∞),

gR,m(λ) = rVold−2
(∂(PD) ∩ ∂(CD) ∩ {z = λ})

2
−

rVold−2 ([∂(PD) \ ∂(CD)] ∩ {z = λ})

2

=
1

2

r
∑

i=1

fR/pFi
,m/pFi

(λ)−
1

2

r
∑

i=1

ΨFi
(λ),

where {Fi}
r
i=1 are the facets of the polytope PD.

In the next example we compute the functions fR/pFi
,m/pFi

and ΨFi
, which enables

us to describe the β-density functions and τ -density functions of the ring and of the
monomial prime ideals of height one.

Example 5.4. We compute the β-density function and the τ -density function of the
monomial prime ideals of height one for the Hirzebruch surface X = Fa, which is a
ruled surface over P1

K, where K is a field of characteristic p > 0. See [Ful93] for a
detailed description of the surface as a toric variety. The T -Cartier divisors are given
by

Di = V (vi), i = 1, 2, 3, 4, where v1 = e1, v2 = e2, v3 = −e1 + ae2, v4 = −e2
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and V (vi) denotes the T -orbit closure corresponding to the cone generated by vi. We
know the Picard group is generated by {Di | i = 1, 2, 3, 4} over Z. One can check
Pic(X) = ZD1 ⊕ ZD4 and D = cD1 + dD4 is ample if and only if c, d > 0. Then

PD = {(x, y) ∈MR | x ≥ −c, 0 ≤ y ≤ d, x ≤ ay}.

The description of the HK-density function and the β-density function of the aasociated
homogeneous coordinate ring (R,m) can be found in [Tri16], [MT19] and [MT20]. The
facets of the polytope PD are given by the hyperplanes x = 0, y = 0, x = ay + c and
y = d. We denote them by F1, F2, F3 and F4 respectively. By Remark 5.3, to compute
the β-density function and the τ -density function, it is enough to compute the functions
fR/pFi

,m/pFi
and the functions ΨFi

for i = 1, 2, 3, 4. We draw the cross section of the

set ∂(PD) at z = λ level for λ ∈ [0,∞) and use the interpretation of these functions in
Remark 2.4 and Definition 4.2, respectively for the computation. We have

fR/pF1
,m/pF1

(λ) =











dλ if 0 ≤ λ < 1,

d(d+ 1− dλ) if 1 ≤ λ < 1 + 1
d
,

0 if λ ≥ 1 + 1
d
,

fR/pF2
,m/pF2

(λ) =











cλ if 0 ≤ λ < 1,

c(c+ 1− cλ) if 1 ≤ λ < 1 + 1
c
,

0 if λ ≥ 1 + 1
c
,

fR/pF3
,m/pF3

(λ) =











adλ if 0 ≤ λ < 1,

ad(d+ 1− dλ) if 1 ≤ λ < 1 + 1
d
,

0 if λ ≥ 1 + 1
d

and

fR/pF4
,m/pF4

(λ) =











(ad+ c)λ if 0 ≤ λ < 1,

(ad+ c)(1− (ad+ c)(λ− 1)) if 1 ≤ λ < 1 + 1
ad+c

,

0 if λ ≥ 1 + 1
ad+c

.

To compute the functions ΨFi
for i = 1, 2, 3, 4, we consider two different cases.

(1) c ≥ d : We have

ΨF1(λ) =



















0 if 0 ≤ λ < 1,

(c+ ad
2
)(d+ 1)d(λ− 1) if 1 ≤ λ < 1 + 1

ad+c
,

(c+ ad
2
)(d+ 1) 1

a
(c+ 1− cλ) if 1 + 1

ad+c
≤ λ < 1 + 1

c
,

0 if λ ≥ 1 + 1
c
,

ΨF2(λ) =



















0 if 0 ≤ λ < 1,

(cd+ d+ ad2

2
+ ad

2
)c(λ− 1) if 1 ≤ λ < 1 + 1

c
,

cdλ+ ad2

2
+ ad

2
if 1 + 1

c
≤ λ < 1 + 1

d
,

0 if λ ≥ 1 + 1
d
,
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ΨF3(λ) =



















0 if 0 ≤ λ < 1,

(c+ ad
2
)(d+ 1)ad(λ− 1) if 1 ≤ λ < 1 + 1

ad+c
,

(c+ ad
2
)(d+ 1)(c+ 1− cλ) if 1 + 1

ad+c
≤ λ < 1 + 1

c
,

0 if λ ≥ 1 + 1
c

and

ΨF4(λ) =



















0 if 0 ≤ λ < 1,

(cd+ d+ ad2

2
− ad

2
)(ad+ c)(λ− 1) if 1 ≤ λ < 1 + 1

ad+c
,

d(ad+ c)(λ− 1) + c+ ad2

2
− ad

2
if 1 + 1

ad+c
≤ λ < 1 + 1

d
,

0 if λ ≥ 1 + 1
d
.

(2) c ≤ d : We have

ΨF1(λ) =







































0 if 0 ≤ λ < 1,

(c+ ad
2
)(d+ 1)d(λ− 1) if 1 ≤ λ < 1 + 1

ad+c
,

(c+ ad
2
)(d+ 1) 1

a
(c+ 1− cλ) if 1 + 1

ad+c
≤ λ < 1 + 1

d
,

(cd+ ad2

2
− ad

2
) 1
a

(

a+ 1− (ad+ c)(λ− 1)
)

if 1 + 1
d
≤ λ < 1 + a+1

ad+c
,

c
a
(c+ 1− cλ) if 1 + a+1

ad+c
≤ λ ≤ 1 + 1

c
,

0 if λ ≥ 1 + 1
c
,

ΨF2(λ) =











0 if 0 ≤ λ < 1,

(cd+ d+ ad2

2
+ ad

2
)c(λ− 1) if 1 ≤ λ < 1 + 1

d
,

0 if λ ≥ 1 + 1
d
,

ΨF3(λ) =















































0 if 0 ≤ λ < 1,

(c+ ad
2
)(d+ 1)ad(λ− 1) if 1 ≤ λ < 1 + 1

ad+c
,

(c+ ad
2
)(d+ 1)(c+ 1− cλ) if 1 + 1

ad+c
≤ λ < 1 + 1

d
,

(c+ ad
2
)(d− 1)

(

a+ 1− (ad+ c)(λ− 1)
)

+c(c+ 1− cλ) if 1 + 1
d
≤ λ < 1 + a+1

ad+c
,

c(c+ 1− cλ) if 1 + a+1
ad+c

≤ λ < 1 + 1
c
,

0 if λ ≥ 1 + 1
c

and

ΨF4(λ) =



























0 if 0 ≤ λ < 1,

(cd+ d+ ad2

2
− ad

2
)(ad+ c)(λ− 1) if 1 ≤ λ < 1 + 1

ad+c
,

d(ad+ c)(λ− 1) + c + ad2

2
− ad

2
if 1 + 1

ad+c
≤ λ < 1 + 1

d
,

(c+ ad
2
)(d− 1)

(

a+ 1− (ad+ c)(λ− 1)
)

if 1 + 1
d
≤ λ < 1 + a+1

ad+c
,

0 if λ ≥ 1 + a+1
ad+c

.
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Definition 5.5. Let R be a Noetherian standard graded ring of dimension d ≥ 2 with
homogeneous maximal ideal m and let M be a finitely generated non negatively graded

R-module. Let ℓ(Mn) =
e0(M,m)
(d−1)!

nd−1 + ẽ1(M,m)nd−2 + · · ·+ ẽd−1(M,m) be the Hilbert

polynomial of (M,m). Recall the Hilbert density function FM : [0,∞) −→ [0,∞), of
M as

FM (λ) =
e0(M,m)

(d− 1)!
λd−1 = lim

n→∞
Fn(λ) :=

1

qd−1
ℓ(M⌊qλ⌋).

Similarly we define the second Hilbert density function GM : [0,∞) −→ R as

GM(λ) = ẽ1(M,m)λd−2 = lim
n→∞

Gn(λ) :=
1

qd−2

(

ℓ(M⌊qλ⌋)− FM

(⌊qλ⌋

q

)

)

.

Proposition 5.6. Let (R,m) and (S,n) be two Noetherian standard graded rings over
an algebraically closed field K (of characteristic p > 0) of dimension d ≥ 2 and d′ ≥ 2,
associated to the toric pairs (X,D) and (Y,D′), resply. For the monomial prime ideal
pF#S of R#S, we have,

GpF#S − gpF#S,m#n
= (GpF − gpF ,m)(FS − fS,n) + (GS − gS,n)(FpF − fpF ,m).

Proof. The proof follows by a similar argument used to prove [MT20, Proposition
44]. �

Remark 5.7. With notations as above, using Proposition 5.6, [MT20, Proposition 44]
and [MT20, Remark 43], one gets

αpF#S = αpF ,m(FS − fS,n) + (GR −GpF )fpF ,m.

This gives a complete description of the β-density function and the τ -density function
for Segre product of toric pairs.

Example 5.8. Let M be a 2 × 3 matrix whose entries are the independent variables
x1, · · · , x6 and let T be the quotient of the ring k[x1, · · · , x6] by the ideal I2(M), gen-
erated by 2 × 2 minors of M. In their paper, Huneke, McDermott and Monsky have
referred to this example by K. Watanabe where β(T,mT ) = −1/4 to show that the map
τ : Cl(T ) −→ R is not necessarily a zero map. In this example we compute the map
τ := τ

mT
for all height one monomial prime ideals. Let (R,mR) and (S,mS) be the

homogeneous coordinate ring for the toric pairs (P1,OP1(1)) and (P2,OP2(1)) respec-
tively. Let I1, I2 ⊆ R and J1, J2, J3 ⊆ S be the monomial prime ideals of height one of
R and S respectively. For the monomial prime ideals of height one Ii#S and R#Jj
of R#S, we compute the β-density function with respect to the homogeneous maximal
ideal mT = mR#mS. We have

βR#S,mT
(λ) =



















2λ2 if 0 ≤ λ < 1,

2λ2 − 12(λ− 1)2 if 1 ≤ λ < 2,

2λ2 − 15
2
λ+ 9

2
if 2 ≤ λ < 3,

0 if λ ≥ 3,



22 MANDIRA MONDAL

βIi#S,mT
(λ) =



















3
2
λ2 if 0 ≤ λ < 1,

3
2
λ2 − 9(λ− 1)2 if 1 ≤ λ < 2,

3
2
λ2 − 9

2
λ if 2 ≤ λ < 3,

0 if λ ≥ 3,

and

βR#Jj ,mT
(λ) =



















λ2 if 0 ≤ λ < 1,

λ2 − 6(λ− 1)2 if 1 ≤ λ < 2,

λ2 − 9
2
(λ− 1) if 2 ≤ λ < 3,

0 if λ ≥ 3.

Hence τ(Ii#S,mT ) = −1
2
for i = 1, 2 and τ(R#Jj ,mT ) =

1
2
for j = 1, 2, 3.
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